Micro-geometry lubrication and life ratings of rolling bearings

Author(s):  
G E Morales-Espejel ◽  
A Gabelli ◽  
E Ioannides

Following the pioneer work of Ertel-Grubin and Dowson and Higgingson, the field of elastohydrodynamic lubrication (EHL) has witnessed a remarkable increase in new developments, notably the incorporation into the analysis of roughness and other surface features (micro-EHL). This article describes the application of new developments in micro-EHL in the deduction of simple analytical formulations that might describe, in a better way, the lubrication of rolling bearings and the effects on life ratings. In this context the lubrication quality factors κ (used in rolling bearing technology) and Λ (generally applied in machine design) are critically compared and discussed. It is found that the commonly used average roughness, R q, is not quite able to properly account for the surface topography effect when the detailed micro-EHL response of the surface has to be accounted for. To this effect, the whole surface micro-geometry needs to be retained in the evaluation. A calculation methodology suitable for this type of analysis is proposed and used in a parametric evaluation of standard bearing surfaces.

Author(s):  
Xingnan Zhang ◽  
Romeo Glovnea

Rolling bearings are the second most used machine components. They work in what it is called elastohydrodynamic lubrication regime. The geometry of rolling element bearings makes the direct measurement of the lubricant film thickness a challenging task. Optical interferometry is widely used in laboratory conditions for studying elastohydrodynamic lubrication however it cannot be used directly in rolling element bearings thus the only suitable methods are electrical techniques. Of these, film thickness measurement based on electrical capacitance of the contacts has been used in the past by a number of authors. One of the limitations of the capacitance method, when used in rolling bearings, is that it cannot distinguish between the contacts of every rolling element and raceway on one hand and on the other between the inner and outer ring contacts. In the present study the authors used an original test rig which can measure the film thickness for only one ball and separately for the inner and outer rings of a radial ball bearing. This paper thus shows for the first-time results of the lubricant film thickness, at the inner and outer raceways, in grease lubricated rolling bearings.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Deepak K. Prajapati ◽  
Mayank Tiwari

Rolling contact fatigue (RCF) is one of the major problems observed in gear mechanisms, which leads to high friction, ultimately resulting in high energy consumption. This paper demonstrates the evolution of surface topography during running-in and subsequent RCF tests under boundary or mixed-elastohydrodynamic lubrication regimes. The case-hardened disks of equal surface finish and hardness are used in the experiments, and the evolution of surface topography is investigated using a white light interferometer. Surface topography at different load stages is measured at three distinct points, on the disks and average roughness and topography parameters are reported. Semi-quantitative techniques are used to determine the asperity-level parameters at different load stages. From the running-in experiment, it is found that running-in is a fast process where substantial change in surface topography occurs due to plastic deformation of most prominent asperity. From the RCF test, it is concluded that within range of the fatigue cycles, the root-mean-square (RMS) roughness (Sq) is negatively correlated with the summit radius (R) and the autocorrelation length (Sal) and positively correlated with the summit density (Sds) and the RMS slope (Sdq). Scanning electron microscope (SEM) analysis reveals the disappearance of grinding ridges, the formation of micropits at a very small scale, and pit growth in the sliding direction.


2020 ◽  
pp. 43-50
Author(s):  
A.S. Komshin ◽  
K.G. Potapov ◽  
V.I. Pronyakin ◽  
A.B. Syritskii

The paper presents an alternative approach to metrological support and assessment of the technical condition of rolling bearings in operation. The analysis of existing approaches, including methods of vibration diagnostics, envelope analysis, wavelet analysis, etc. Considers the possibility of applying a phase-chronometric method for support on the basis of neurodiagnostics bearing life cycle on the basis of the unified format of measurement information. The possibility of diagnosing a rolling bearing when analyzing measurement information from the shaft and separator was evaluated.


1987 ◽  
Vol 109 (3) ◽  
pp. 444-450 ◽  
Author(s):  
L. Houpert ◽  
E. Ioannides ◽  
J. C. Kuypers ◽  
J. Tripp

A recently proposed fatigue life model for rolling bearings has been applied to the study of lifetime reduction under conditions conducive to microspalling. The presence of a spike in the EHD pressure distribution produces large shear stresses localized very close to the surface which may account for early failure. This paper describes a parametric study of the effect of such spikes. Accurate stress fields in the volume are calculated for simulated pressure spikes of different height, width and position relative to a Hertzian pressure distribution, as well as for different lubricant traction coefficients and film thicknesses. Despite the high stress concentrations in the surface layers, reductions in life predicted by the model are modest. Typically, the pressure spike may halve the life, with the implication that subsurface fatigue still dominates. In corroboration of this prediction, preliminary experimental work designed to reproduce microspalling conditions shows that microindents due to overrolling particles are a much more common form of surface damage than microspalling.


2011 ◽  
Vol 110-116 ◽  
pp. 2497-2503 ◽  
Author(s):  
Zdenek Vintr ◽  
Michal Vintr

Rolling bearings are usually considered to be non-repaired items the reliability of which is characterized by mean time to failure, or so called basic rating life. Reliability describes these parameters well in case the bearings are used in operation up to the very time the failure occurs, or during the time corresponding with basic rating life. In case of railway applications the bearings are often used in large groups and are preventively replaced after much shorter operating time as compared with their basic rating life. In the article there is a model which enables us to describe the bearings reliability in this specific case and to specify a number of failures which might be expected from a group of bearings during operating time, or to determine mean operating time between failures of bearings.


Author(s):  
Ghasem Ghannad Tehrani ◽  
Chiara Gastaldi ◽  
Teresa Maria Berruti

Abstract Rolling bearings are still widely used in aeroengines. Whenever rotors are modeled, rolling bearing components are typically modeled using springs. In simpler models, this spring is considered to have a constant mean value. However, the rolling bearing stiffness changes with time due to the positions of the balls with respect to the load on the bearing, thus giving rise to an internal excitation known as Parametric Excitation. Due to this parametric excitation, the rotor-bearings system may become unstable for specific combinations of boundary conditions (e.g. rotational speed) and system characteristics (rotor flexibility etc.). Being able to identify these instability regions at a glance is an important tool for the designer, as it allows to discard since the early design stages those configurations which may lead to catastrophic failures. In this paper, a Jeffcott rotor supported and excited by such rolling bearings is used as a demonstrator. In the first step, the expression for the time–varying stiffness of the bearings is analytically derived by applying the Hertzian Contact Theory. Then, the equations of motion of the complete system are provided. In this study, the Harmonic Balance Method (HBM) is used to as an approximate procedure to draw a stability map, thus dividing the input parameter space, i.e. rotational speed and rotor physical characteristics, into stable and unstable regions.


Sign in / Sign up

Export Citation Format

Share Document