Hydraulic actuation of multi-body structures through large-scale motions. Part 2: Controller design and performance

Author(s):  
D T Branson ◽  
P S Keogh ◽  
D G Tilley

This paper addresses a controller design methodology for the hydraulic actuation of non-linear multi-body systems. It takes account of system uncertainties, envisaged system changes through added mass, positioning speed requirements, and vibration control. A mathematical model developed in the companion paper, Part 1, describes an experimental multi-body structure that is actuated by a hydraulic system. It is used to generate H∞-based position and active vibration controllers to meet the actuation requirements at the design stage. Experimental tests were undertaken with the developed H∞ controllers to demonstrate their accuracy and stability of motion control. The results are compared to ‘base level’ tests completed using a more traditional proportional-integral (PI) controller. In contrast with the instability experienced using PI control, the design process associated with the H∞ controllers ensures accurate closed loop stability over the range of system variations.

Author(s):  
D T Branson ◽  
P S Keogh ◽  
D G Tilley

Modern engineering design is leading towards structures that are complex and lightweight. These structures often contain flexible and rigid components actuated through large displacements by a non-linear hydraulic system. Due to the increased system complexities, there is a need to define structural models that can be easily coupled to models of the hydraulic system for use in the design of suitable controllers. The current paper develops a modular system model composed of rigid and flexible structural components coupled directly to a non-linear hydraulic system. The resulting model allows for changes to be made to the hydraulic and structural components in an independent manner such that the entire system may be incorporated in a single simulation domain. A structural damping matrix is introduced that allows a control system designer to assign realistic modal damping ratios to well established modes, and higher damping to modes with significant uncertainty. This allows for increased steady-state accuracy and model run-time efficiency, which is beneficial to the controller design process presented in Part 2. The system modelling approach is applied to a hydraulically actuated experimental rig for validation purposes.


1984 ◽  
Vol 106 (1) ◽  
pp. 6-14 ◽  
Author(s):  
A. Galip Ulsoy

The reduction of vibration in rotating or translating elastic systems (e.g., shafts, circular saws, belts, handsaws) is an important engineering problem. This paper presents the characteristics of rotating or translating elastic system vibration problems which are significant for the design of active controllers. The effect of the rotation or translation velocity on the controller design, and the effects of observation and control spillover are discussed. Simulation results for two example problems, a rotating cantilever shaft and an axially moving string, are used to illustrate the design and performance of active vibration controllers for rotating or translating elastic systems.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1924 ◽  
Author(s):  
Wei-Hao Lee ◽  
Kae-Long Lin ◽  
Ting-Hsuan Chang ◽  
Yung-Chin Ding ◽  
Ta-Wui Cheng

The key objective of this study was to develop marble-based geopolymer concrete and examine the viability of its application as a sustainable structural material for the construction industry. The results of the research demonstrated that marble-based geopolymer concrete can be developed, and its physical/mechanical properties were shown to have a very good performance. According to various experimental tests and a large-scale ready-mixed plant test, it was found that the marble-based geopolymer concrete displayed a good workability and was not easily influenced by temperature changes. The results showed that marble-based geopolymer concrete has an excellent potential for further engineering development in the future.


Author(s):  
Wissam Benmalek ◽  
Manuel Collet ◽  
Emmanuel Foltete ◽  
Morvan Ouisse ◽  
Mathieu Corus

Steam Generator (SG) tubes are subjected to fluid-elastic coupling forces and impacts against support plates & anti-vibration bars. Understanding their vibrations is crucial not only at the design stage, but also to optimize the SG maintenance policy and to lengthen the SG service life. The aim of our research is to provide a better understanding of the conjugate stabilizing effects of impacts and coupling with fluid-elastic forces. Since fluid-elastic forces are difficult to simulate and expensive to reproduce experimentally, the fluid coupling forces of our numerical model are represented using velocity dependent damping and stiffness matrices, both for the fluid and the tube. Their effect is experimentally reproduced having recourse to active vibration control in the frame of specifically designed “hybrid” experimental tests. In this paper, we present a method for modeling tube vibrations in order to estimate the conjugate effects of the coupling between the fluid elastic forces and impacts. This strategy lowers the costs and avoids the difficulties associated to the case of fluid in the experiments. Our numerical model will be implemented in the active control loop in the next step of the study.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 415
Author(s):  
Dayong Ning ◽  
Zihao Li ◽  
Gangda Liang ◽  
Qibo Wang ◽  
Weifeng Zou ◽  
...  

Considering the further exploration of the ocean, the requirements for deep-sea operation equipment have increased. Many problems existing in the widely used deep-sea hydraulic system have become increasingly prominent. Compared with the traditional deep-sea hydraulic system, actuators using a paraffin phase change material (PCM) have incomparable advantages, including lightweight structure, low energy consumption, high adaptability to the deep sea, and good biocompatibility. Thus, a deep-sea drive microunit (DDM) based on paraffin PCM is proposed in this paper. The device adopts a flexible shell, adapting to the high-pressure environment of the deep-sea based on the principle of pressure compensation. The device realizes the output of displacement and force through the electrothermal drive, which can be used as actuator or power source of other underwater operation equipment. The microunit successfully completes the functional verification experiments in air, shallow water, and hydrostatic pressure of 110 MPa. In accordance with experimental results, a reasonable control curve is fitted, highlighting its potential application in deep-sea micro electro mechanical systems, especially in underwater soft robot.


2021 ◽  
Vol 1 ◽  
pp. 3229-3238
Author(s):  
Torben Beernaert ◽  
Pascal Etman ◽  
Maarten De Bock ◽  
Ivo Classen ◽  
Marco De Baar

AbstractThe design of ITER, a large-scale nuclear fusion reactor, is intertwined with profound research and development efforts. Tough problems call for novel solutions, but the low maturity of those solutions can lead to unexpected problems. If designers keep solving such emergent problems in iterative design cycles, the complexity of the resulting design is bound to increase. Instead, we want to show designers the sources of emergent design problems, so they may be dealt with more effectively. We propose to model the interplay between multiple problems and solutions in a problem network. Each problem and solution is then connected to a dynamically changing engineering model, a graph of physical components. By analysing the problem network and the engineering model, we can (1) derive which problem has emerged from which solution and (2) compute the contribution of each design effort to the complexity of the evolving engineering model. The method is demonstrated for a sequence of problems and solutions that characterized the early design stage of an optical subsystem of ITER.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Hossam A. Gabbar ◽  
Ahmed M. Othman ◽  
Muhammad R. Abdussami

The evolving global landscape for electrical distribution and use created a need area for energy storage systems (ESS), making them among the fastest growing electrical power system products. A key element in any energy storage system is the capability to monitor, control, and optimize performance of an individual or multiple battery modules in an energy storage system and the ability to control the disconnection of the module(s) from the system in the event of abnormal conditions. This management scheme is known as “battery management system (BMS)”, which is one of the essential units in electrical equipment. BMS reacts with external events, as well with as an internal event. It is used to improve the battery performance with proper safety measures within a system. Therefore, a safe BMS is the prerequisite for operating an electrical system. This report analyzes the details of BMS for electric transportation and large-scale (stationary) energy storage. The analysis includes different aspects of BMS covering testing, component, functionalities, topology, operation, architecture, and BMS safety aspects. Additionally, current related standards and codes related to BMS are also reviewed. The report investigates BMS safety aspects, battery technology, regulation needs, and offer recommendations. It further studies current gaps in respect to the safety requirements and performance requirements of BMS by focusing mainly on the electric transportation and stationary application. The report further provides a framework for developing a new standard on BMS, especially on BMS safety and operational risk. In conclusion, four main areas of (1) BMS construction, (2) Operation Parameters, (3) BMS Integration, and (4) Installation for improvement of BMS safety and performance are identified, and detailed recommendations were provided for each area. It is recommended that a technical review of the BMS be performed for transportation electrification and large-scale (stationary) applications. A comprehensive evaluation of the components, architectures, and safety risks applicable to BMS operation is also presented.


Sign in / Sign up

Export Citation Format

Share Document