Reduction of friction torque in vane pump by smoothing cam ring surface

Author(s):  
Y Inaguma ◽  
A Hibi

This work deals with the influence of surface roughness of cam contours on friction torque in a hydraulic balanced vane pump and it is verified that smoothing the surface of the cam contour can reduce friction torque. In the vane pump, the friction torque arising from the friction between a cam contour and vane tips is significant. In this article, first, the values of the coefficient of friction between the vane tip and its sliding surfaces were measured by using cylindrical test rings with various kinds of surface roughness. Then the torque characteristics of vane pumps having cam ring contours with various values of surface roughness were measured and their results compared with the results of an analysis of the coefficient of friction investigated using test rings. As a result, the friction torque caused by the friction between the cam contour and the vane tip was reduced by lessening the surface roughness of the cam contour, resulting in an improvement of the mechanical efficiency. The coefficient of friction measured by using the test rings could be applied to the actual vane pumps.

Author(s):  
Y Inaguma ◽  
A Hibi

This paper describes the theoretical analysis on the mechanical efficiency of a hydraulic-balanced vane pump and presents a design concept to decide values such as vane thickness and cam lift to improve its mechanical efficiency. In this paper, the friction torque characteristics of the balanced vane pump, especially the friction torque caused by the friction between a cam contour and vane tips are both experimentally and theoretically investigated. Although the friction force increases with vane thickness increase due to increase in the vane force, the mechanical efficiency of the vane pump does not decrease when the cam lift becomes large as the vane thickness is increased. An important parameter ∊ defined as the ratio to be obtained by dividing the cam lift by the vane thickness determines essentially the mechanical efficiency of the vane pump. The pumps with the same ∊ have the same mechanical efficiencies, even if the cam lift or the vane thickness varies. A larger value of ∊ leads the vane pump to obtain a higher mechanical efficiency although the limit of vane strength governs the upper limit for ∊. Additionally, reducing the friction coefficient of the vane tip contributes to improvement of the mechanical efficiency.


Author(s):  
E. M. Evans ◽  
J. Whittle

This paper is intended to demonstrate that designers of wet clutches for power transmission can obtain the optimum friction characteristics for specific applications by considering the interaction between friction materials and lubricants. A friction clutch plate rig is described and the friction results obtained are presented. It is shown that a wide variation of coefficients of friction and frictional characteristics in wet friction clutches can be obtained by changing the oils and friction materials. In particular the coefficient of friction is dependent upon (1) the oil, (2) the materials of the sliding surfaces, (3) sliding speed, and (4) temperature. It is also shown that the coefficient of friction is affected by ( a) refining treatment given to the oil, ( b) different base oils, and ( c) additives.


MRS Advances ◽  
2020 ◽  
Vol 5 (54-55) ◽  
pp. 2753-2762
Author(s):  
Mathew Brownell ◽  
Arun K. Nair

AbstractPolytetrafluoroethylene (PTFE) film is observed to increase surface roughness during annealing. Longer annealing times leads to greater surface roughness. The coefficient of friction of PTFE film is affected by the shape of microscale sized particles on the film surface. In this study, we investigate the coefficient of friction of PTFE films using a coarse-grained molecular dynamics model based on experimental observations. We observe how the variation in PTFE chain length and film density affect the topography of PTFE films. We also investigate how these properties of PTFE, and the indenter radius affect the coefficient of friction observed during surface scratch. We find that short PTFE chain lengths create a dense film with greater particle spacing, but longer chains form a mesh structure which reduces the density and creates overlapping portions of particles in the film. We develop a convolutional neural network to classify PTFE film surface and predict the coefficient of friction of a modeled film based solely on the equilibrated film topography. The accuracy of the network was seen to increase when the density and images of internal fiber orientation were added as input features. These results indicate that the coefficient of friction of PTFE films in part is governed by the internal structure of the film.


2019 ◽  
Vol 41 ◽  
pp. 153-160
Author(s):  
Roque Calvo ◽  
Roberto D’Amato ◽  
Emilio Gómez ◽  
Alessandro Ruggiero

2015 ◽  
Vol 88 (1) ◽  
pp. 163-175 ◽  
Author(s):  
R. Mohan ◽  
S. Raja ◽  
G. Saraswathy ◽  
B. N. Das

ABSTRACT Human slip on smooth surfaces is a common accident, even though the footwear soling materials are designed with cleats and treads to provide more friction with the floor. About 20% of footwear is made with thermoplastic rubber (TPR; styrene-butadiene-styrene) soles. The slip resistance property under wet-flooring conditions of this kind of sole is poor because of the nonionic nature of the polymer. Chemical surface modification can be exploited to improve the slip-resistance property of TPR soles. The surface is chemically modified with trichloroisocyanuric acid in a methyl ethyl ketone medium (TCI/MEK; at 1, 2, and 3%) to introduce chlorinated and oxidized moieties to the rubber surface. The extent of surface modification produced in TPR with this change can be tested using attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy, and contact angle and surface roughness measurements. The improvement in slip resistance can be evaluated by measuring the coefficient of friction using a dynamic slip-resistance tester. The extent of the change in the functional physical properties, such as surface roughness, contact angle, work adhesion, in slip resistance can be improved by optimizing the concentration of trichloroisocyanuric acid. Physicomechanical properties of unmodified and modified soles that are essential for wear performance can be tested and compared. Quantitative changes on the surface of modified rubber soles increases surface roughness, reduces contact angles, and increases work energy, so there is a considerable increase in the coefficient of friction, especially under wet floor conditions. The chemical surface treatment tends to reduce the bulk mechanical properties, such as tensile strength, elongation at break, and abrasion resistance, because cyanuric acid attacks the sole. The coefficient of friction produces a positive trend at 1 and 2% TCI/MEK treatments, but the trend is negative at a 3% concentration. The optimum surface treatment level for surface modification to enhance the slip resistance of TPR is 2% TCI/MEK.


1970 ◽  
Vol 92 (2) ◽  
pp. 264-272 ◽  
Author(s):  
T. Tsukizoe ◽  
T. Hisakado

A study was made of surface roughness effects on dry friction between two metals, assuming that the asperities are cones of the slopes which depend on the surface roughness. The theoretical explanations were offered for coefficients of friction of the hard cones and spheres ploughing along the soft metal surface. A comparison of calculated values based on these with experimental data shows good agreement. Moreover, theoretical discussion was carried out of surface roughness effects on dry friction between two metal surfaces on the basis of the analyses of the frictional mechanism for a hard slider on the metal surface. The theoretical estimation of the coefficient of friction between two metal surfaces can be carried out by using the relations between the surface roughness and the slopes of the asperities, and the coefficient of friction due to the adhesion at the interface. The experiments also showed that when two metal surfaces are first loaded normally and then subjected to gradually increasing tangential forces, real area of contact between them increases and the maximum tangential microslip of them increases with the increase of the surface roughness.


Author(s):  
Dinesh G. Bansal ◽  
Jeffrey L. Streator

An experiment is conducted to investigate the role of surface roughness on the coefficient of friction and contact resistance of sliding electrical contacts. A hemispherical pin is sliding along both smooth and rough 2-meter rail surface. Tests are performed at both low and moderate sliding speed and for a range of electrical current densities, ranging from 0 to about 12 GA/m2. It was found that surface roughness had a significant influence on the coefficient of friction, with the smoother surfaces exhibiting higher coefficients of friction. Contact resistance, on the other hand, did not show as strong an effect of surface roughness, except for a few parameter combinations. At the higher current densities studied (>10 GA/m2), it was found that the contact resistance values tended to be on the order of 1 mΩ, independent of load, speed and roughness. This convergence may be due to presence of liquid metal film at the interface, which established ideal electrical contact.


1989 ◽  
Vol 111 (2) ◽  
pp. 386-390 ◽  
Author(s):  
Yufeng Li ◽  
Ali Seireg

This paper deals with the development of a dimensionless empirical formula for calculating the coefficient of friction in sliding-rolling steel on steel contacts under different operating conditions in the thermal regime. The effect of lubrication, surface roughness, and surface coating on friction are considered. The formula shows excellent correlation with the experimental tests conducted by many investigators and provides a unified relationship for all the published data.


Author(s):  
Kalle Kalliorinne ◽  
Roland Larsson ◽  
Andreas Almqvist

The bearing geometry has a big impact on the performance of a hydrodynamic thrust bearing. For this reason, shape optimisation of the bearing surface has been carried out for some time, with Lord Rayleigh’s early publication dated back to 1918. There are several recent results e.g. optimal bearing geometries that maximise the load carrying capacity for hydrodynamic thrust bearings. Currently, many engineers are making an effort to include sustainability in their work, which increases the need for bearings with lower friction and higher load carrying capacity. Improving these two qualities will result in lower energy consumption and increase the lifetime of applications, which are outcomes that will contribute to a sustainable future. For this reason, there is a need to find geometries that have performance characteristics of as low coefficient of friction torque as possible. In this work, the topological optimisation method of moving asymptotes is employed to optimise bearing geometries with the objective of minimising the coefficient of friction torque. The results are both optimised bearing geometries that minimise the coefficient of friction torque and bearing geometries that maximise the load carrying capacity. The bearing geometries are of comparable aspect ratios to the ones uses in recent publications. The present article also covers minimisation of friction torque on ring bearing geometries, also known as thrust washers. The results are thrust washers with periodical geometries, where the number of periodical segments has a high impact on the geometrical outcome.


Author(s):  
Y Inaguma

This paper presents a method of reducing friction torque in a hydraulic vane pump through a short-period pump operation by using physical vapour deposition (PVD)-coated vanes. It is well known that the friction torque in a vane pump as well as in other hydraulic machines can be reduced by running-in through a long-time pump operation. This paper revealed that the reduction in the friction torque was derived from lowered friction between a cam contour and vane tips owing to the smoothed surface of a cam contour. Commonly, it was difficult to obtain such an effect through a short-period pump operation. The author has attempted to lessen the surface roughness of the cam contour and to decrease the friction torque of a vane in a short period of time by using vanes coated with an extremely hard PVD layer on their tips. In this study, three kinds of coatings of chromium nitride (CrN), titanium carbonitride (TiCN), and diamond-like carbon (DLC) by PVD were examined. It was found that the TiCN-coated vane was excellent in smoothing the surface roughness of the cam contour and in reducing the friction torque of the vane in a short period of time. It was also shown that the reduced friction torque of the vane depended essentially on the smoothness of the cam contour surface. In addition, the difference of the friction at the vane tip between an ordinary vane and coated vanes was indistinct for the same surface roughness of the cam contour below 0.8 μ m Rz.


Sign in / Sign up

Export Citation Format

Share Document