Circumferential Creep Strain of Cylinders Subjected to Internal Pressure: A Comparison of the Theories of Johnson and Bailey

1966 ◽  
Vol 8 (1) ◽  
pp. 22-26 ◽  
Author(s):  
E. C. Larke ◽  
R. J. Parker

When considering the creep of cylinders subjected to internal pressure, the theory of Johnson et al. takes into account progressive changes of radial, circumferential and axial stress at any point in the wall thickness. This approach differs from that put forward by Bailey, who assumed that these stresses remained constant with time. The present paper summarizes an examination of both theories, with particular reference to outside and bore diameters, and presents simple equations which enable circumferential strain to be calculated without using the complex graphical integration procedure suggested by Johnson. Furthermore, it is demonstrated that these equations are mathematically identical with those derived by Bailey.

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Lasinta Ari Nendra Wibawa

The rocket motor is an important part of rockets. The rocket motor works using the pressure vessel principle because it works in an environment with high pressure and temperature. This paper investigates the von Mises stress that occurs in thin-walled cylinders and safety factors for rocket motor cases due to the influence of the wall thickness and internal pressure. Dimensions of the cylinder length are 500 mm, outer diameter is 200 mm, and cap thickness is 30 mm. The wall thickness is varied 6, 7, 8, and 9 mm, while the internal pressure is varied 8, 9, and 10 MPa. Stress analysis is performed using the finite element method with Ansys Workbench 2019 R3 software. The simulation results show that the maximum von Mises stress decreases with increasing wall thickness. The maximum von Mises stress increases with increasing internal pressure. The material has a safety factor higher than 1.25 for all variations in wall thickness and internal pressure. It means that the material can withstand static loads. The verification process is done by comparing the results of finite element analysis with analytical calculations for maximum hoop stress and maximum axial stress with a fixed boundary condition. The results of maximum hoop stress and maximum axial stress using finite element analysis and analytical calculations are not significantly different. The percentage of errors between analytical calculations and finite element analysis is less than 6 percent.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Satoshi Yamada ◽  
Kazunori Okada ◽  
Hisao Nishino ◽  
Hiroyuki Iwano ◽  
Daisuke Murai ◽  
...  

Background: Longitudinal myocardial shortening is known to be reduced even if left ventricular (LV) ejection fraction (EF) is preserved in patients with hypertensive heart disease (HHD). However, the compensatory mechanism remains to be elucidated. Thus layer-specific longitudinal and circumferential strain as well as stress-strain relationship was observed in HHD patients. Methods: In 46 HHD patients with preserved EF (>50%) and 29 age-matched control subjects, global longitudinal strain (LS) and layer-specific circumferential strain (CS) were measured from the apical 4-chamber view and mid-ventricular short-axis view, respectively, by using speckle tracking echocardiography. LS was measured at innermost LV wall layer, and CS at innermost, midwall, and outermost layers. Layer-specific end-systolic circumferential wall stress (CWS) according to Mirsky’s formula and endocardial meridional wall stress (MWS) were calculated. Results: Systolic blood pressure (147±20 mm Hg), interventricular septal thickness (13±2 mm), and LV dimension (48±4 mm) were greater in HHD than controls, whereas EF was comparable (66±8 vs 66±5%). LS was smaller in HHD than controls (-13±3 vs -17±3%, p<0.001) in spite of reduced MWS (520±141 vs 637±164 dyn·mm -2 , p<0.01), suggesting impaired longitudinal myocardial function in HHD. Similarly, CS was smaller in HHD than controls at outer layer (-6.8±2.2 vs -8.8±2.2%, p<0.01) and at midwall (-11.3±3.4 vs -13.9±3.2%, p<0.01) in spite of reduced CWS (outer: 238±82 vs 336±110 dyn·mm -2 , p<0.001; mid: 360±107 vs 473±131 dyn·mm -2 , p<0.001). In contrast, at the innermost layer, both CS (-26±5 vs -25±5%, p=0.41) and CWS (979±153 vs 992±139 dyn·mm -2 , p=0.72) were comparable between groups. Furthermore, the difference of CS between inner and outer layers significantly correlated with relative wall thickness (r=-0.33, p<0.01). Finally, CS at inner layer significantly correlated with EF (r=-0.43, p<0.001), whereas LS did not. Conclusions: In patients with HHD, intrinsic myocardial shortening was impaired both longitudinally and circumferentially. Some compensatory mechanism associated with increased relative wall thickness might work to maintain subendocardial CS, resulting in preserved EF.


2007 ◽  
Vol 340-341 ◽  
pp. 353-358 ◽  
Author(s):  
M. Loh-Mousavi ◽  
Kenichiro Mori ◽  
K. Hayashi ◽  
Seijiro Maki ◽  
M. Bakhshi

The effect of oscillation of internal pressure on the formability and shape accuracy of the products in a pulsating hydroforming process of T-shaped parts was examined by finite element simulation. The local thinning was prevented by oscillating the internal pressure. The filling ratio of the die cavity and the symmetrical degree of the filling was increased by the oscillation of pressure. The calculated deforming shape and the wall thickness are in good agreement with the experimental ones. It was found that pulsating hydroforming is useful in improving the formability and shape accuracy in the T-shape hydroforming operation.


Author(s):  
Changshuai Shi ◽  
Kailin Chen ◽  
Xiaohua Zhu ◽  
Feilong Cheng ◽  
Yuekui Qi ◽  
...  

Abstract The large-diameter solid expandable tubular with a smaller wall thickness faces the risk of internal pressure burst and external squeeze collapse in repairing damaged casing well. The internal pressure and external squeezing resistance calculation of the tubes using the analytical method require many expansion experiments and post-expansion tensile experiments, resulting in high costs and low efficiency. This paper gives a set of laboratory expansion and post-expansion performance test, which is based on the laboratory experiment and mechanical properties of material expansion. Two materials are studied: 316L and 20G. Then it analyses the error and causes of the error in the traditional analytical algorithm. Besides, it establishes an accurate finite element (FE) model to study the quantitative influence of expansion ratio and wall thickness on the burst strengths and collapse strengths of the tube. The results show that the toughness and hardening ratio of 316L is better than 20G at the same expansion ratio. The numerical simulation results of the model can effectively simulate the expansion process and the mechanical properties of SET in good agreement with the laboratory test results. The expansion ratio and wall thickness affect the mechanical properties after expansion. Thus the quantitative laws of the expansion driving force, internal pressure resistance, and external squeezing resistance under different variables are summarized. To ensure the integrity of the reinforced wellbore, the expansion ratio should not exceed 12.7%. In the current study lays a theoretical basis and technical support for optimizing SET and preventing downhole accidents.


Author(s):  
Andrew Cosham ◽  
Robert Andrews

Abstract Annex G Assessment of locally thinned areas (LTAs) in BS 7910:2013 is applicable to LTAs in cylinder, a bend and a sphere or vessel end. It can be used to assess the longitudinally-orientated LTA in a cylinder subject to a hoop stress and a circumferentially-orientated LTA in a cylinder subject to an axial stress (due to axial force, in-plane bending moment and internal pressure), and also to assess an LTA subject to a hoop stress and an axial stress. An outline of the origins of Annex G is given. A comparison with full-scale burst tests of pipes or vessels containing LTAs subject to a hoop stress and an axial stress is presented. It is demonstrated that the method in G.4.3 Hoop stress and axial stress is conservative.


2011 ◽  
Vol 488-489 ◽  
pp. 646-649
Author(s):  
Milan Opalić ◽  
Ivica Galić ◽  
Krešimir Vučković

A globe valve is a linear motion valve used to shut off and regulate fluid flow in pipelines. Depending on the number of process connections, they are produced as two‑ or three-way valves. The main valve component carrying the internal pressure is the valve body. For safe exploitation, the valves are designed with the allowable internal pressure taken into consideration. The aim of this paper is to investigate the influence of the wall thickness on the allowable and failure pressures of two- and tree-way globe valve bodies, DN50 and DN100 respectively. Twice-elastic-slope (TES) and the tangent‑intersection (TI) methods are used to obtain the plastic collapse pressures at the critical location which was determined (Fig. 1a and 1b) at the location where maximum equivalent plastic strain throughout the valve body thickness reaches the outer surface. Obtained values are used afterwards to calculate corresponding allowable pressures according to the limit design method, while the failure pressure at the same location was determined as the highest point from the load-maximal principal strain curve. Calculated allowable pressure values, for both valve bodies, are compared with the corresponding ones obtained using the EN standard.


2016 ◽  
Vol 710 ◽  
pp. 97-102 ◽  
Author(s):  
Peter Knoedel ◽  
Thomas Ummenhofer

Within the code-family of the Eurocodes, provisions for aluminium shells are given in EN 1999-1-5 (EC9) [1]. EC9-1-5 is listed in the Bavarian List of Technical Building Regulations. Thus, in Bavaria as well as in other Federal States of Germany it is mandatory to use EC9-1-5 for the verification of silos. A typical aluminium silo for industrial products might have a diameter of 3 m, a bin height of 10 m and wall thicknesses of 4 mm / 5 mm. The aluminium alloy EN AW-5754 [Al Mg3] O/H111 (EN 485-2 [2]) would be typical as well. Relevant for determining the required wall thickness is the buckling resistance under axial compression in the skirt and axial compression with coexisting internal pressure in the silo bin. When some obvious shortcomings in the formulae for coexisting internal pressure were investigated, it was found that there is a big discrepancy between scientific research, which has been done on the imperfection sensitivity of aluminium shells and the design equations in EC9-1-5. In the present paper an effort was made, in order to tackle these discrepancies and make clear, in which points the code needs amendment.


Author(s):  
G. Shen ◽  
W. R. Tyson

A stress-strain equation of Ramberg-Osgood type is proposed to correlate the longitudinal stress with longitudinal strain of a thin plate when a constant stress is applied transversely. The same approach can be used to correlate the axial stress with axial strain for a thin-walled pipe in axial tension with internal pressure. The proposed stress-strain equation relating the longitudinal stress and strain closely approximates that of deformation theory. The effect of a secondary stress (hoop stress) on the J-integral for a circumferential crack in a pipe under axial load and internal pressure is evaluated by finite element analysis (FEA). The results show that the J-integral decreases with internal pressure at a given axial stress but increases with internal pressure at a given axial strain. It is concluded that while a secondary stress may be safely neglected in a stress-based format because it decreases the driving force at a given applied stress, it should not be neglected in a strain-based format because it significantly increases the driving force at a given applied strain.


Sign in / Sign up

Export Citation Format

Share Document