Strategies to Meet US 1994/95 Diesel Engine Federal Emission Legislation for HSDI diesel Engine Powered Vehicles

Author(s):  
L Bürgler ◽  
P L Herzog ◽  
P Zelenka

The forthcoming US passenger car and light-duty truck emission limits are currently the most stringent ones worldwide. The paper discusses which type of diesel engine has the best chance of fulfilling those requirements and what development strategy has to be followed. A comparative analysis between IDI and DI diesel engines shows the potential of the HSDI diesel engine to meet NOx/particulates limits of 0.4/0.08 g/min while maintaining its fuel economy advantage. Appropriate technological strategies are outlined. Besides the well-known technologies such as central position of injector and piston bowl, multi-valve cylinder head, inlet port swirl control etc., main emphasis is placed on the optimization of mixture preparation using fuel systems with variable injection rates as well as oxidation and DENOX catalysts.

Author(s):  
Gian Marco Bianchi ◽  
Giulio Cazzoli ◽  
Claudio Forte ◽  
Marco Costa ◽  
Marcello Oliva

Nowadays, environmental concerns are posing a great challenge to DI Diesel engines. Increasingly tightening emission limits require a higher attention on combustion efficiency. In this scenario, computational fluid-dynamics can prove its power guaranteeing a deeper understanding of mixture formation process and combustion. A high efficiency Diesel engine can be developed only mastering all the parameters that can affect the combustion and, therefore, NOx and soot emissions. In this work, the development of an engine in order to fulfill Tier 4i emission standard will be presented. Originally, the engine was a two-valve engine supplied with a DPF. Since no SCR aftertreatment is supplied, NOx emission target are achieved through external exhaust gas recirculation and retarding the start of injection. In order to fulfill Tier 4i emissions, the main concern is on soot emission and, thus, the combustion chamber has been re-designed, through CFD simulations, leading to a better interaction between the flow field, the fuel spray and the piston bowl geometry. Particularly, through intake phase simulations, performed with the CFD code Fire v2009 v3, different intake ducts, with different swirl ratio, have been simulated in order to provide a flow field as realistic as possible for the combustion simulations. Through combustion process simulations, performed with the CFD code Kiva, by varying different parameters the interaction between the swirl flow field, generated by the intake duct, the reverse squish motion, and motions aerodynamically generated by spray has been investigated leading to the definition of a new engine lay-out. The study shows how, given the need of retarded injection for limiting NOx emission, the decrease of swirl ratio, when combined with a proper piston bowl design, allows a significant decrease of soot emissions and the achievement of Tier 4i emission standard.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ikhtedar Husain Rizvi ◽  
Rajesh Gupta

AbstractTightening noose on engine emission norms compelled manufacturers globally to design engines with low emission specially NOx and soot without compromising their performance. Amongst various parameters, shape of piston bowls, injection pressure and nozzle diameter are known to have significant influence over the thermal performance and emission emanating from the engine. This paper investigates the combined effect of fuel injection parameters such as pressure at which fuel is injected and the injection nozzle size along with shape of piston bowl on engine emission and performance. Numerical simulation is carried out using one cylinder naturally aspirated diesel engine using AVL FIRE commercial code. Three geometries of piston bowls with different tumble and swirl characteristics are considered while maintaining the volume of piston bowl, compression ratio, engine speed and fuel injected mass constant along with equal number of variations for injection nozzle size and pressures for this analysis. The investigation corroborates that high swirl and large turbulence kinetic energy (TKE) are crucial for better combustion. TKE and equivalence ratio also increased as the injection pressure increases during the injection period, hence, enhances combustion and reduces soot formation. Increase in nozzle diameter produces higher TKE and equivalence ratio, while CO and soot emission are found to be decreasing and NOx formation to be increasing. Further, optimization is carried out for twenty-seven cases created by combining fuel injection parameters and piston bowl geometries. The case D2H1P1 (H1 = 0.2 mm, P1 = 200 bar) found to be an optimum case because of its lowest emission level with slightly better performance.


Author(s):  
Jonathan Dolak ◽  
Deep Bandyopadhyay

The objective of this research was to optimize an Electro-Motive Diesel (EMD) large-bore, two-cycle diesel engine (710 cubic inches of displacement per cylinder) at high load to minimize soot, nitrogen oxide (NOx) and fuel consumption. The variables considered were the number of spray-hole nozzles per injector, including spray angle and piston bowl geometry, for a range of injection pressures. Analytical simulations were conducted for a calibrated EMD 710 Tier 2 engine and a few of the top-performing cases were studied in detail. CONVERGE™, a commercially available, advanced combustion simulation software was used in this analysis. A surface deforming tool, Sculptor®, was used to obtain various piston bowl geometries. MiniTab® was utilized for statistical analysis. Results show that optimal combinations of injection variables and piston bowl shape exist to simultaneously reduce emissions and fuel consumption compared to Tier 2 EMD 710 engines. These configurations will be further tested in a single-cylinder test cell and presented later. This investigation shows the importance of bowl geometry and spray targeting on emissions and fuel consumption for large-bore, two-stroke engines with high power density.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


2020 ◽  
pp. 146808742091880
Author(s):  
José Manuel Luján ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Varun Pandey

This article proposes a method for fuel minimisation of a Diesel engine with constrained [Formula: see text] emission in actual driving mission. Specifically, the methodology involves three developments: The first is a driving cycle prediction tool which is based on the space-variant transition probability matrix obtained from an actual vehicle speed dataset. Then, a vehicle and an engine model is developed to predict the engine performance depending on the calibration for the estimated driving cycle. Finally, a controller is proposed which adapts the start-of-injection calibration map to fulfil the [Formula: see text] emission constraint while minimising the fuel consumption. The calibration is adapted during a predefined time window based on the predicted engine performance on the estimated cycle and the difference between the actual and the constraint on engine [Formula: see text] emissions. The method assessment was done experimentally in the engine test set-up. The engine performace using the method is compared with the state-of-the-art static calibration method for different [Formula: see text] emission limits on real driving cycles. The online implementation of the method shows that the fuel consumption can be reduced by 3%–4% while staying within the emission limits, indicating that the estimation method is able to capture the main driving cycle characterstics.


Sign in / Sign up

Export Citation Format

Share Document