The Electrical Systems of Five Wind Farms

Author(s):  
N Jenkins ◽  
A Vaudin

The design, construction and early operating experience of the electrical systems of five wind farms, with a total installed capacity of 35 MW, is described. The design approaches adopted for the wind farm internal electrical systems and the interfaces to the rural public supply networks have been shown to be successful. No significant failures of electrical equipment or disturbances to the public supply network have occurred.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6582
Author(s):  
Santiago M. López ◽  
Mar Cebrián

This paper lays out the role of the first centre in the world for the integration into the electrical grid of electricity coming from renewable energy (the Spanish acronym for which is CECRE (Centro de Control de Energías Renovables; Control Centre for Renewable Energies)) and the industrial development of large energy suppliers and wind turbine manufacturers in Spain. These two initiatives enabled the development of one of the first integrated markets for this type of energy source. The key contributions were the development of two software programs (wind management and management of solar light incidence), their visual implementation, and centralized digital control. An economic and business history approach is used to show the rise and relative failure of the Spanish wind industry during the period 2004–2015, when Spain became the fourth country after China, the US, and Germany in terms of installed capacity of renewable energy and, in relative terms, the second country after Denmark. This study is unique in that it provides an integrated vision of the reasons for the relative fall of Spain in the world ranking of wind energy producers. The methodology of the economic analysis of industrial policies makes it possible to explain the fall in the relative importance of Spain in the international panorama of wind farms


2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 141-157 ◽  
Author(s):  
Vladimir Katic ◽  
Boris Dumnic ◽  
Nenad Katic ◽  
Dragan Milicevic ◽  
Stevan Grabic

The paper presents an overview of the wind energy potentials, technologies and market prospects in the Autonomous Province of Vojvodina, the region of Serbia with the most suitable location for exploitation of wind energy. The main characteristics of the region have been presented regarding wind energy and electric, road, railway and waterway infrastructure. The wind farm interconnection with the public grid is explained. The most suitable locations for the wind farms are presented, with present situation and future prospects of wind market in Vojvodina.


2015 ◽  
Vol 28 (15) ◽  
pp. 6160-6180 ◽  
Author(s):  
Anna C. Fitch

Abstract The local, regional, and global climate impacts of a large-scale global deployment of wind power in regionally high densities over land are investigated for a 60-yr period. Wind farms are represented as elevated momentum sinks as well as enhanced turbulence to represent turbine blade mixing in the Community Atmosphere Model, version 5 (CAM5), a global climate model. For a total installed capacity of 2.5 TW, to provide 16% of the world’s projected electricity demand in 2050, minimal impacts are found both regionally and globally on temperature, sensible and latent heat fluxes, cloud, and precipitation. A mean near-surface warming of 0.12 ± 0.07 K is seen within the wind farms, with a global-mean temperature change of −0.013 ± 0.015 K. Impacts on wind speed and turbulence are more pronounced but largely confined within the wind farm areas. Increasing the wind farm areas to provide an installed capacity of 10 TW, or 65% of the 2050 electricity demand, causes further impacts; however, they remain slight overall. Maximum temperature changes are less than 0.5 K in the wind farm areas. To provide 20 TW of installed capacity, or 130% of the 2050 electricity demand, impacts both within the wind farms and beyond become more pronounced, with a doubling in turbine density. However, maximum temperature changes remain less than 0.7 K. Representing wind farms instead as an increase in surface roughness generally produces similar mean results; however, maximum changes increase, and influences on wind and turbulence are exaggerated. Overall, wind farm impacts are much weaker than those expected from greenhouse gas emissions, with very slight global-mean climate impacts.


2018 ◽  
Vol 53 ◽  
pp. 01002
Author(s):  
GUO Min ◽  
JIN Qingren ◽  
CHEN Weidong

The harmonic voltage at the wind farm interconnection point does not exceed the harmonic distortion limits of all voltage levels stipulated by the national standard. The allowable value of the harmonic current injected into the power system shall be allocated in proportion to the total capacity and installed capacity of the harmonic source equipment. However, judging from the status quo of the implementation of harmonic national standard, there is still much controversy over this standard. One of the focal points of controversy is determining the limits of whether different types of harmonic sources should be treated differently. Based on the theoretical research, this paper selects the typical wind farm interconnection points and calculates the admittance capacity limits under different harmonic constraints of the wind farm based on the historical data and the level of harmonic planning, and analyzes the rationality of the calculation results.


Author(s):  
Anand P. Deshmukh ◽  
James T. Allison

Wind energy is a rapidly expanding source of renewable energy, but is highly intermittent. The performance of a wind farm, composed of a collection of wind turbines, depends not only on the placement of wind turbines in a farm, but also control actions taken by individual turbines. The wind turbine placement (layout) design problem involves adjusting turbine locations within a given area to improve a performance objective (such as maximizing annualized energy production). This layout problem has been addressed previously considering the effect of constraints such land configuration, installed capacity, and wake model choice on the performance of wind farms. All the studies, however, ignore the effects of the control system, which can have significant impact on performance. A well designed wind farm — without an optimal controller — will not achieve the full system level optimal performance, and vice-versa. In this article, we propose a novel layout co-design approach that includes optimal control considerations to exploit this synergy between farm layout and control. Layout case studies involving 8 and 12 turbines are presented. An annual energy production improvement of up to 17% is observed when accounting for coupling between control and layout design, when compared to layout-only optimization.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Nina Lansbury Hall ◽  
Jarra Hicks ◽  
Taryn Lane ◽  
Emily Wood

The wind industry is positioned to contribute significantly to a clean energy future, yet the level of community opposition has at times led to unviable projects. Social acceptance is crucial and can be improved in part through better practice community engagement and benefit-sharing. This case study provides a “snapshot” of current community engagement and benefit-sharing practices for Australian wind farms, with a particular emphasis on practices found to be enhancing positive social outcomes in communities. Five methods were used to gather views on effective engagement and benefit-sharing: a literature review, interviews and a survey of the wind industry, a Delphi panel, and a review of community engagement plans. The overarching finding was that each community engagement and benefit-sharing initiative should be tailored to a community’s context, needs and expectations as informed by community involvement. This requires moving away from a “one size fits all” approach. This case study is relevant to wind developers, energy regulators, local communities and renewable energy-focused non-government organizations. It is applicable beyond Australia to all contexts where wind farm development has encountered conflicted societal acceptance responses.


2019 ◽  
Vol 21 (2) ◽  
pp. 745-754
Author(s):  
Otávio Augusto de Oliveira Lima Barra ◽  
Fábio Perdigão Vasconcelos ◽  
Danilo Vieira dos Santos ◽  
Adely Pereira Silveira

O Brasil é um país com uma extensa linha de costa, são cerca de 7.367 km de extensão do seu litoral, com um potencial natural para a geração de energia eólica. O estado do Ceará é um dos maiores produtores de energia eólica para o país, obtendo notoriedade e a necessidade de manutenção dos seus parques eólicos, especialmente se instalados em zonas de costa, onde há uma grande dinâmica natural. O presente trabalho, busca o acompanhamento das dinâmicas morfológicas na praia de Volta do Rio, localizada em Acaraú/CE, que fica a cerca de 238 km de Fortaleza/CE. Os dados coletados em idas à campo, constataram que há um forte processo erosivo atuante na praia de Volta do Rio, o que alerta para a contenção do avanço marinho sob o parque eólico presente no local. A erosão é um fenômeno natural que trabalha na modelação de demasiadas formas terrestres. No litoral, isso não é diferente, por ser um ambiente altamente dinâmico onde há a interação entre continente, atmosfera e oceano, sendo possível encontrar diversos atuantes que podem intensificar os processos erosivos, sejam eles o vento, maré, ou por intervenções humanas, como construções e ocupações indevidas ao longo da linha de costa.Palavras Chave: Volta do Rio; Energia Eólica; Erosão. ABSTRACTBrazil is a country with an extensive coastline, about 7,367 km of coastline, with a natural potential for wind power generation. The state of Ceará is one of the largest producers of wind energy for the country, obtaining notoriety and required maintenance of its wind farms, especially if located in coastal areas, where there is a great natural dynamic. The present work seeks the movement of morphological dynamics in the beach of Volta do Rio, located in Acaraú/CE, which is about 238 km from Fortaleza/CE. The data collected in the field found that there is a strong erosive process on the Beach of Volta do Rio, which warns about the expansion of advanced marine on the wind farm present on site. Erosion is a natural phenomenon that works in the modeling of many hearth forms. On the coast, this is not different, considering a highly dynamic environment in which there is an interaction between continent, atmosphere and ocean, being possible to find many factors that can intensify the erosive processes, such as wind, tide, or human intervention, as constructions and improper occupations along the coast line.Key words: Volta do Rio; Wind Energy; Erosion. RESUMENBrasil es un país con una extensa costa, cerca de 7.367 km de costa, con un potencial natural para la generación de energía eólica. El estado del Ceará es uno de los mayores productores de energía eólica del país, ganando notoriedad y la necesidad de mantener sus parques eólicos, especialmente si está instalado en zonas costeras, donde existe una gran dinámica natural. La presente investigación tiene como objetivo monitorear la dinámica morfológica en la playa de Vuelta del Rio, ubicada en Acaraú / CE, que está a unos 238 km de Fortaleza / CE. Los datos recopilados en los viajes de campo, encontraron que hay un fuerte proceso erosivo en la playa de Vuelta del Rio, que advierte sobre la contención del avance marino bajo el parque eólico presente en el sitio. La erosión es un fenómeno natural que funciona en el modelado de muchas formas terrestres. En la costa, esto no es diferente, ya que es un entorno altamente dinámico donde existe la interacción entre el continente, la atmósfera y el océano, permitiendo encontrar varios actores que pueden intensificar los procesos erosivos, ya sea viento, marea o intervenciones humanas, como edificios y ocupaciones inadecuadas a lo largo de la costa.Palabras clave: Vuelta del Río; Energía Eólica; Erosión.


Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3615
Author(s):  
Adelaide Cerveira ◽  
Eduardo J. Solteiro Pires ◽  
José Baptista

Green energy has become a media issue due to climate changes, and consequently, the population has become more aware of pollution. Wind farms are an essential energy production alternative to fossil energy. The incentive to produce wind energy was a government policy some decades ago to decrease carbon emissions. In recent decades, wind farms were formed by a substation and a couple of turbines. Nowadays, wind farms are designed with hundreds of turbines requiring more than one substation. This paper formulates an integer linear programming model to design wind farms’ cable layout with several turbines. The proposed model obtains the optimal solution considering different cable types, infrastructure costs, and energy losses. An additional constraint was considered to limit the number of cables that cross a walkway, i.e., the number of connections between a set of wind turbines and the remaining wind farm. Furthermore, considering a discrete set of possible turbine locations, the model allows identifying those that should be present in the optimal solution, thereby addressing the optimal location of the substation(s) in the wind farm. The paper illustrates solutions and the associated costs of two wind farms, with up to 102 turbines and three substations in the optimal solution, selected among sixteen possible places. The optimal solutions are obtained in a short time.


Sign in / Sign up

Export Citation Format

Share Document