scholarly journals In Vitro and In Vivo Synergism between Tetracycline and the Cardiovascular Agent Oxyfedrine HCl against Common Bacterial Strains

2005 ◽  
Vol 28 (4) ◽  
pp. 713-717 ◽  
Author(s):  
Kaushiki Mazumdar ◽  
Noton Kumar Dutta ◽  
Kuppusamy Asok Kumar, ◽  
Sujata Ghosh Dastidar
2020 ◽  
Vol 18 (1) ◽  
pp. 764-777
Author(s):  
Sumaira Naz ◽  
Muhammad Zahoor ◽  
Muhammad Naveed Umar ◽  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
...  

AbstractThioureas and their derivatives are organosulfur compounds having applications in numerous fields such as organic synthesis and pharmaceutical industries. Symmetric thiourea derivatives were synthesized by the reaction of various anilines with CS2. The synthesized compounds were characterized using the UV-visible and nuclear magnetic resonance (NMR) spectroscopic techniques. The compounds were screened for in vitro inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and for their antibacterial and antioxidant potentials. These compounds were fed to Swiss male albino mice to evaluate their toxicological effects and potential to inhibit glucose-6-phosphatase (G6Pase) inhibition. The antibacterial studies revealed that compound 4 was more active against the selected bacterial strains. Compound 1 was more active against 2,2-diphenyl-1-picrylhydrazyl and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, AChE, BuChE, and α-glucosidase. Compound 2 was more potent against α-amylase and G6Pase. Toxicity studies showed that compound 4 is safe as it exerted no toxic effect on any of the hematological and biochemical parameters or on liver histology of the experimental animals at any studied dose rate. The synthesized compounds showed promising antibacterial and antioxidant potential and were very active (both in vitro and in vivo) against G6Pase and moderately active against the other selected enzymes used in this study.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Chih Tsai ◽  
Sew-Fen Leu ◽  
Quan-Rong Huang ◽  
Lan-Chun Chou ◽  
Chun-Chih Huang

Three lactic acid bacterial strains,Lactobacillus plantarum, HK006, and HK109, andPediococcus pentosaceusPP31 exhibit probiotic potential as antiallergy agents, both in vitro and in vivo. However, the safety of these new strains requires evaluation when isolated from infant faeces or pickled cabbage. Multiple strains (HK006, HK109, and PP31) were subject to a bacterial reverse mutation assay and a short-term oral toxicity study. The powder product exhibited mutagenic potential inSalmonellaTyphimurium strains TA98 and TA1535 (with or without metabolic activation). In the short-term oral toxicity study, rats received a normal dosage of 390 mg/kg/d (approximately9×109 CFU/kg/d) or a high dosage of 1950 mg/kg/d (approximately4.5×1010 CFU/kg/d) for 28 d. No adverse effects were observed regarding the general condition, behaviour, growth, feed and water consumption, haematology, clinical chemistry indices, organ weights, or histopathologic analysis of the rats. These studies have demonstrated that the consumption of multiple bacterial strains is not associated with any signs of mutagenicity ofS.Typhimurium or toxicity in Wistar rats, even after consuming large quantities of bacteria.


2016 ◽  
pp. 85-92 ◽  
Author(s):  
R. Haidar ◽  
C. Calvo-Garrido ◽  
J. Roudet ◽  
T. Gautier ◽  
A. Deschamps ◽  
...  

Author(s):  
Prasanna Habbu ◽  
Vijayanand Warad ◽  
Rajesh Shastri ◽  
Chetan Savant ◽  
Smita Madagundi ◽  
...  

Author(s):  
KAMNI RAJPUT ◽  
RAMESH CHANDRA DUBEY

Objective: In vitro antioxidant activity, in vivo antidiabetic property and intestinal attachment by two potential probiotic bacterial strains, namely, Enterococcus faecium and Enterococcus hirae were studied using albino rats. Methods: Antioxidant the activity was assessed using 2,2-Diphenyl-1-picrylhydrazyl radicals scavenging assay. Alloxan was administered intraperitoneally to induce diabetic conditions in experimental rats. Animals were treated with oral administration of Enterococcus spp., such as E. faecium, and E. hirae isolated from goat and sheep milk. The control animal group received normal saline for the same days. Glibenclamide drug was used as a positive control against probiotic bacterial cells. Results: However, administration of probiotic bacterial strains E. faecium and E. hirae, in albino rats significantly (p<0.05) at varying doses lowered blood glucose levels in diabetic rats as compared to the diabetic control group. Both the species of Enterococcus increased the bodyweight of experimental rats. However, E. faecium was the best antidiabetic strain having the antioxidant activities also in comparison to E. hirae. The attachment of probiotic bacterial cells E. faecium on the rat’s intestine wall against pathogens was examined. Furthermore, E. faecium showed its aggregation with pathogens by attachment of the intestines of albino rats. This showed that both the bacterial strains exhibited in vivo antidiabetic effect. Conclusion: The results of this study showed that probiotic bacteria possess antioxidant, antidiabetic activities, and attachment of intestine.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S30-S31
Author(s):  
Gabriel Suarez ◽  
Bo Liu ◽  
Jeremy Herzog ◽  
Ryan Sartor

Abstract Sulfur metabolism is emerging as a signature of IBD gut microbiota. Overrepresentation of sulfur-reducing bacteria (SRB) in IBD results in SRB-derived epithelial toxic H2S production that can overwhelm the body’s detoxification capacity, leading to impaired cellular respiration by inhibiting oxygen binding to mitochondrial cytochrome-c-oxidase. Butyrate potently inhibits SRBs and H2S, yet IBD patients have reduced short chain fatty acid (SCFA) production. More critically, H2S blocks butyrate oxidation, the primary energy source of colonocytes; butyrate oxidation deficiency is a defining characteristic of IBD. Since cysteine is the preferred substrate for H2S production by SRBs, a cysteine-rich environment provided by either a high protein diet or local intestinal mucus degradation promotes ideal conditions for SRB establishment and proliferation. SRBs can catabolize other sulfur-containing compounds critical for immune homeostasis and cellular health, such as taurine-conjugated bile acids and the “master antioxidant” glutathione, leading to further toxic H2S production. However, the molecular underpinnings of sulfur metabolism by specific bacterial genera is understudied in IBD. Results: Using a combination of in-vivo and in-vitro screening to detect the relative induction of interleukin 10 (IL-10) and interferon g (IFNg) by 19 resident bacterial strains isolated from a healthy human donor, we identified 4 bacterial strains that induce a low IL-10/IFNg ratio. These 4 strains (low group), but not 3 bacterial strains that induce a high IL-10/IFNg ratio, induce colitis in selectively colonized gnotobiotic Il10-/- mice (Fig.1A). Two of these 4 disease-inducing strains, Clostridium perfringens (A12) and Clostridium bolteae (B6), produce high concentrations of H2S in monoassociated mice (Fig.1B). In-vitro H2S production by these strains is dependent on cysteine (Fig.1C). C. perfringens and C. bolteae each induce colitis in monoassociated Il10-/- mice (Fig.1D). We are dissecting the sulfur metabolic pathways in C. perfringens and C. bolteae and their contribution to inflammatory processes by interrupting key genes predicted to contribute to H2S production, cysteine catabolism and bile acid metabolism. We will use these mutants in both in-vitro and in-vivo Il10 -/- gnotobiotic mice models to characterize their metabolic and inflammatory profiles. We have created several mutants using Targetron gene editing, including the dissimilatory sulfate reductase (Δdsr), a putative sulfonate membrane transporter (ΔssuA), anaerobic sulfite reductase (ΔasrA) and bile salt hydrolase (Δbsh). Conclusions: H2S producing bacterial strains can induce experimental colitis. Our planned mechanistic studies will determine the metabolic routes for H2S production by specific aggressive bacteria to guide novel therapeutic or dietary interventions to improve IBD prognosis.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S144-S145
Author(s):  
Yohan Yu ◽  
Seung ji Kang ◽  
Dong-Yeon Kim ◽  
Ayoung Pyo ◽  
Sehyeon Ji ◽  
...  

Abstract Background Invasive aspergillosis is a major cause of infectious morbidity and mortality in immunocompromised patients.However, definitive diagnosis of invasive Aspergillus infection is still difficult due to the lack of a rapid, sensitive and specific diagnostic methods. In this studies, we investigated 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS) which has been reported to be accumulated in Gram-negative bacteria but not in Gram-positive bacteria or healthy mammalian or cancer cells, for the imaging detection of Aspergullus fumigatus infections with PET in vivo. Methods [18F]FDS was synthesized by reduction of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) using NaBH4. When the reaction was complete, the mixture was adjusted to a pH value to 6.5–7.5. Subsequently, the solution was filtered directly into a sterile product vial through a Sep-Pak Alumina N cartridge with a sterile filter. The probe uptake assay was performed by incubating bacterial cell and fungi with [18F]FDS (20 µCi) at 37°C for 2 h. Female BALB/c were immunosuppressed with cyclophosphamide and cortisone acetate prior to A. fumigatus intranasal, intramuscular, brain infection. The mircoPET images were obtained at 2 h after i.v. injection of [18F]FDS in infected mice. Results In vitro uptake test revealed significantly higher accumulation of [18F]FDS at 2 hin A. fumigatus, C. albicans and R. oryzae rather than with bacterial strains (Figure 1). PET imaging of BALB/c mice with pulmonary A. fumigatus infections showed obvious accumulation of [18F]FDS in the infected lungs compared with control (Figure 2). [18F]FDS PET imaging also detected A. fumigatus muscle and brain infection in mice. In infected shoulder muscle of mice, [18F]FDS PET imaging showed high legion-to-background ratio at 2 h. (4.05 ± 1.59, Figure 3). Conclusion [18F]FDS PET study demonstrated stable uptake in infected tissue with A. fumigatus and rapid clearance from the blood and other organs. [18F]FDS could be a useful imaging probe visualizing the invasive aspergillosis in vivo. Disclosures All authors: No reported disclosures.


2012 ◽  
Vol 3 (2) ◽  
pp. 137-144 ◽  
Author(s):  
F. Vieira de Souza ◽  
R. Roque ◽  
J.L. Silva Moreira ◽  
M. Resende de Souza ◽  
J.R. Nicoli ◽  
...  

The aim of this study was to assess the potential horizontal transfer of genetic traits for antibiotic resistance between lactobacilli isolated from the chicken gut, both in vitro and in vivo. Thirty-seven Lactobacillus spp. strains isolated from the gizzard, small and large intestines and caeca of free-range broiler chickens showed multi-drug resistance as assessed by disc diffusion assays. The minimum inhibitory concentration (MIC) for vancomycin, tetracycline, erythromycin and chloramphenicol was determined in De Man, Rogosa and Sharpe broth in a microplate assay. Almost all the lactobacilli isolates were resistant to vancomycin (except strains belonging to the Lactobacillus acidophilus group) and to tetracycline (MIC≥128 μg/ml). Only five strains were resistant to erythromycin, and six to chloramphenicol. The transfer rate in filter mating experiments performed using L. acidophilus strain 4M14E (EmR), Lactobacillus vaginalis strain 5M14E (CmR), Lactobacillus salivarius strain 5C14C (EmR), and the 4G14L and 3C14C strains of Lactobacillus reuteri (CmR) showed a frequency of approximately 1×104 cfu/ml of double-resistant transconjugants for the different combinations. The exception was the L. salivarius 5C14C (EmR) and L. vaginalis 5M14E (CmR) mating combination, which produced no transconjugants. In vivo experiments performed in gnotobiotic mice by mating L. acidophilus 4M14E (EmR) with L. reuteri 3C14C (CmR), L. reuteri 4G14L (CmR) or L. vaginalis 5M14E (CmR) resulted in transconjugants at 3.95±0.29, 3.16±0.33, and 4.55±1.52 log10 cfu/g of faeces, respectively. Taken together, these data suggest that genetic exchange may occur between native bacterial strains within the gastrointestinal tract of chickens, which might maintain a dynamic gene pool conferring antibiotic resistance upon indigenous microbiota components, even in the absence of the pathogens. This possibility must be taken into account as a complementary criterion when lactobacilli are screened for probiotic use.


2018 ◽  
Vol 154 (6) ◽  
pp. S-96
Author(s):  
Bo Liu ◽  
Jessica L. Allen ◽  
Akihiko Oka ◽  
Jeffrey I. Gordon ◽  
Christopher Karp ◽  
...  

2017 ◽  
Vol 157 (4) ◽  
pp. 696-699 ◽  
Author(s):  
Darius Henatsch ◽  
Cindy H. Nabuurs ◽  
Rens M. van de Goor ◽  
Petra F. Wolffs ◽  
Robert J. Stokroos

Eczematous external otitis is a chronic inflammatory disease and often difficult to treat. Our objective was to investigate the clinical effect and in vitro antibacterial potential of medical honey eardrops as treatment of eczematous external otitis. In a prospective study, 15 patients diagnosed with recurrent eczematous external otitis were treated with medical honey eardrops for 2 weeks. The following clinical outcomes were evaluated: visual analog scale of ear complaints, score of eczema, and eradication of bacterial infection. Furthermore, the antibacterial effect of honey eardrops against different bacterial strains was tested in vitro. Treatment resulted in less discomfort and itching and decreased signs of eczema, with high patient satisfaction and without adverse reactions. Honey eardrops showed a strong in vitro inhibitory activity against all tested strains but did not eradicate Staphylococcus aureus infection in vivo. The results of this preliminary study indicate a possible role of honey eardrops in eczematous ear disease.


Sign in / Sign up

Export Citation Format

Share Document