scholarly journals 260. Detection of Aspergillus fumigatus Infection in Mice with 2-Deoxy-2-[18F]fluorosorbitol

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S144-S145
Author(s):  
Yohan Yu ◽  
Seung ji Kang ◽  
Dong-Yeon Kim ◽  
Ayoung Pyo ◽  
Sehyeon Ji ◽  
...  

Abstract Background Invasive aspergillosis is a major cause of infectious morbidity and mortality in immunocompromised patients.However, definitive diagnosis of invasive Aspergillus infection is still difficult due to the lack of a rapid, sensitive and specific diagnostic methods. In this studies, we investigated 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS) which has been reported to be accumulated in Gram-negative bacteria but not in Gram-positive bacteria or healthy mammalian or cancer cells, for the imaging detection of Aspergullus fumigatus infections with PET in vivo. Methods [18F]FDS was synthesized by reduction of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) using NaBH4. When the reaction was complete, the mixture was adjusted to a pH value to 6.5–7.5. Subsequently, the solution was filtered directly into a sterile product vial through a Sep-Pak Alumina N cartridge with a sterile filter. The probe uptake assay was performed by incubating bacterial cell and fungi with [18F]FDS (20 µCi) at 37°C for 2 h. Female BALB/c were immunosuppressed with cyclophosphamide and cortisone acetate prior to A. fumigatus intranasal, intramuscular, brain infection. The mircoPET images were obtained at 2 h after i.v. injection of [18F]FDS in infected mice. Results In vitro uptake test revealed significantly higher accumulation of [18F]FDS at 2 hin A. fumigatus, C. albicans and R. oryzae rather than with bacterial strains (Figure 1). PET imaging of BALB/c mice with pulmonary A. fumigatus infections showed obvious accumulation of [18F]FDS in the infected lungs compared with control (Figure 2). [18F]FDS PET imaging also detected A. fumigatus muscle and brain infection in mice. In infected shoulder muscle of mice, [18F]FDS PET imaging showed high legion-to-background ratio at 2 h. (4.05 ± 1.59, Figure 3). Conclusion [18F]FDS PET study demonstrated stable uptake in infected tissue with A. fumigatus and rapid clearance from the blood and other organs. [18F]FDS could be a useful imaging probe visualizing the invasive aspergillosis in vivo. Disclosures All authors: No reported disclosures.

2019 ◽  
Vol 16 (8) ◽  
pp. 688-697
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

: In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


2020 ◽  
Vol 18 (1) ◽  
pp. 764-777
Author(s):  
Sumaira Naz ◽  
Muhammad Zahoor ◽  
Muhammad Naveed Umar ◽  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
...  

AbstractThioureas and their derivatives are organosulfur compounds having applications in numerous fields such as organic synthesis and pharmaceutical industries. Symmetric thiourea derivatives were synthesized by the reaction of various anilines with CS2. The synthesized compounds were characterized using the UV-visible and nuclear magnetic resonance (NMR) spectroscopic techniques. The compounds were screened for in vitro inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and for their antibacterial and antioxidant potentials. These compounds were fed to Swiss male albino mice to evaluate their toxicological effects and potential to inhibit glucose-6-phosphatase (G6Pase) inhibition. The antibacterial studies revealed that compound 4 was more active against the selected bacterial strains. Compound 1 was more active against 2,2-diphenyl-1-picrylhydrazyl and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, AChE, BuChE, and α-glucosidase. Compound 2 was more potent against α-amylase and G6Pase. Toxicity studies showed that compound 4 is safe as it exerted no toxic effect on any of the hematological and biochemical parameters or on liver histology of the experimental animals at any studied dose rate. The synthesized compounds showed promising antibacterial and antioxidant potential and were very active (both in vitro and in vivo) against G6Pase and moderately active against the other selected enzymes used in this study.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1451
Author(s):  
Carolina Romeiro Fernandes Chagas ◽  
Josef Harl ◽  
Vytautas Preikša ◽  
Dovilė Bukauskaitė ◽  
Mikas Ilgūnas ◽  
...  

Recent studies confirmed that some Hepatozoon-like blood parasites (Apicomplexa) of birds are closely related to the amphibian parasite Lankesterella minima. Little is known about the biology of these pathogens in birds, including their distribution, life cycles, specificity, vectors, and molecular characterization. Using blood samples of 641 birds from 16 species, we (i) determined the prevalence and molecular diversity of Lankesterella parasites in naturally infected birds; (ii) investigated the development of Lankesterella kabeeni in laboratory-reared mosquitoes, Culex pipiens forma molestus and Aedes aegypti; and (iii) tested experimentally the susceptibility of domestic canaries, Serinus canaria, to this parasite. This study combined molecular and morphological diagnostic methods and determined 11% prevalence of Lankesterella parasites in Acrocephalidae birds; 16 Lankesterella lineages with a certain degree of host specificity and two new species (Lankesterella vacuolata n. sp. and Lankesterella macrovacuolata n. sp.) were found and characterized. Lankesterella kabeeni (formerly Hepatozoon kabeeni) was re-described. Serinus canaria were resistant after various experimental exposures. Lankesterella sporozoites rapidly escaped from host cells in vitro. Sporozoites persisted for a long time in infected mosquitoes (up to 42 days post exposure). Our study demonstrated a high diversity of Lankesterella parasites in birds, and showed that several avian Hepatozoon-like parasites, in fact, belong to Lankesterella genus.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Chih Tsai ◽  
Sew-Fen Leu ◽  
Quan-Rong Huang ◽  
Lan-Chun Chou ◽  
Chun-Chih Huang

Three lactic acid bacterial strains,Lactobacillus plantarum, HK006, and HK109, andPediococcus pentosaceusPP31 exhibit probiotic potential as antiallergy agents, both in vitro and in vivo. However, the safety of these new strains requires evaluation when isolated from infant faeces or pickled cabbage. Multiple strains (HK006, HK109, and PP31) were subject to a bacterial reverse mutation assay and a short-term oral toxicity study. The powder product exhibited mutagenic potential inSalmonellaTyphimurium strains TA98 and TA1535 (with or without metabolic activation). In the short-term oral toxicity study, rats received a normal dosage of 390 mg/kg/d (approximately9×109 CFU/kg/d) or a high dosage of 1950 mg/kg/d (approximately4.5×1010 CFU/kg/d) for 28 d. No adverse effects were observed regarding the general condition, behaviour, growth, feed and water consumption, haematology, clinical chemistry indices, organ weights, or histopathologic analysis of the rats. These studies have demonstrated that the consumption of multiple bacterial strains is not associated with any signs of mutagenicity ofS.Typhimurium or toxicity in Wistar rats, even after consuming large quantities of bacteria.


2016 ◽  
pp. 85-92 ◽  
Author(s):  
R. Haidar ◽  
C. Calvo-Garrido ◽  
J. Roudet ◽  
T. Gautier ◽  
A. Deschamps ◽  
...  

Author(s):  
Prasanna Habbu ◽  
Vijayanand Warad ◽  
Rajesh Shastri ◽  
Chetan Savant ◽  
Smita Madagundi ◽  
...  

Author(s):  
KAMNI RAJPUT ◽  
RAMESH CHANDRA DUBEY

Objective: In vitro antioxidant activity, in vivo antidiabetic property and intestinal attachment by two potential probiotic bacterial strains, namely, Enterococcus faecium and Enterococcus hirae were studied using albino rats. Methods: Antioxidant the activity was assessed using 2,2-Diphenyl-1-picrylhydrazyl radicals scavenging assay. Alloxan was administered intraperitoneally to induce diabetic conditions in experimental rats. Animals were treated with oral administration of Enterococcus spp., such as E. faecium, and E. hirae isolated from goat and sheep milk. The control animal group received normal saline for the same days. Glibenclamide drug was used as a positive control against probiotic bacterial cells. Results: However, administration of probiotic bacterial strains E. faecium and E. hirae, in albino rats significantly (p<0.05) at varying doses lowered blood glucose levels in diabetic rats as compared to the diabetic control group. Both the species of Enterococcus increased the bodyweight of experimental rats. However, E. faecium was the best antidiabetic strain having the antioxidant activities also in comparison to E. hirae. The attachment of probiotic bacterial cells E. faecium on the rat’s intestine wall against pathogens was examined. Furthermore, E. faecium showed its aggregation with pathogens by attachment of the intestines of albino rats. This showed that both the bacterial strains exhibited in vivo antidiabetic effect. Conclusion: The results of this study showed that probiotic bacteria possess antioxidant, antidiabetic activities, and attachment of intestine.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S30-S31
Author(s):  
Gabriel Suarez ◽  
Bo Liu ◽  
Jeremy Herzog ◽  
Ryan Sartor

Abstract Sulfur metabolism is emerging as a signature of IBD gut microbiota. Overrepresentation of sulfur-reducing bacteria (SRB) in IBD results in SRB-derived epithelial toxic H2S production that can overwhelm the body’s detoxification capacity, leading to impaired cellular respiration by inhibiting oxygen binding to mitochondrial cytochrome-c-oxidase. Butyrate potently inhibits SRBs and H2S, yet IBD patients have reduced short chain fatty acid (SCFA) production. More critically, H2S blocks butyrate oxidation, the primary energy source of colonocytes; butyrate oxidation deficiency is a defining characteristic of IBD. Since cysteine is the preferred substrate for H2S production by SRBs, a cysteine-rich environment provided by either a high protein diet or local intestinal mucus degradation promotes ideal conditions for SRB establishment and proliferation. SRBs can catabolize other sulfur-containing compounds critical for immune homeostasis and cellular health, such as taurine-conjugated bile acids and the “master antioxidant” glutathione, leading to further toxic H2S production. However, the molecular underpinnings of sulfur metabolism by specific bacterial genera is understudied in IBD. Results: Using a combination of in-vivo and in-vitro screening to detect the relative induction of interleukin 10 (IL-10) and interferon g (IFNg) by 19 resident bacterial strains isolated from a healthy human donor, we identified 4 bacterial strains that induce a low IL-10/IFNg ratio. These 4 strains (low group), but not 3 bacterial strains that induce a high IL-10/IFNg ratio, induce colitis in selectively colonized gnotobiotic Il10-/- mice (Fig.1A). Two of these 4 disease-inducing strains, Clostridium perfringens (A12) and Clostridium bolteae (B6), produce high concentrations of H2S in monoassociated mice (Fig.1B). In-vitro H2S production by these strains is dependent on cysteine (Fig.1C). C. perfringens and C. bolteae each induce colitis in monoassociated Il10-/- mice (Fig.1D). We are dissecting the sulfur metabolic pathways in C. perfringens and C. bolteae and their contribution to inflammatory processes by interrupting key genes predicted to contribute to H2S production, cysteine catabolism and bile acid metabolism. We will use these mutants in both in-vitro and in-vivo Il10 -/- gnotobiotic mice models to characterize their metabolic and inflammatory profiles. We have created several mutants using Targetron gene editing, including the dissimilatory sulfate reductase (Δdsr), a putative sulfonate membrane transporter (ΔssuA), anaerobic sulfite reductase (ΔasrA) and bile salt hydrolase (Δbsh). Conclusions: H2S producing bacterial strains can induce experimental colitis. Our planned mechanistic studies will determine the metabolic routes for H2S production by specific aggressive bacteria to guide novel therapeutic or dietary interventions to improve IBD prognosis.


Sign in / Sign up

Export Citation Format

Share Document