scholarly journals Noncovalent Strategy with Cell-Penetrating Peptides to Facilitate the Brain Delivery of Insulin through the Blood–Brain Barrier

2018 ◽  
Vol 41 (4) ◽  
pp. 546-554 ◽  
Author(s):  
Noriyasu Kamei ◽  
Ai Yamaoka ◽  
Yukiko Fukuyama ◽  
Rei Itokazu ◽  
Mariko Takeda-Morishita
2020 ◽  
Vol 17 (5) ◽  
pp. 375-386 ◽  
Author(s):  
Behrang Shiri Varnamkhasti ◽  
Samira Jafari ◽  
Fereshteh Taghavi ◽  
Loghman Alaei ◽  
Zhila Izadi ◽  
...  

The passage of therapeutic molecules across the Blood-Brain Barrier (BBB) is a profound challenge for the management of the Central Nervous System (CNS)-related diseases. The ineffectual nature of traditional treatments for CNS disorders led to the abundant endeavor of researchers for the design the effective approaches in order to bypass BBB during recent decades. Cell-Penetrating Peptides (CPPs) were found to be one of the promising strategies to manage CNS disorders. CPPs are short peptide sequences with translocation capacity across the biomembrane. With special regard to their two key advantages like superior permeability as well as low cytotoxicity, these peptide sequences represent an appropriate solution to promote therapeutic/theranostic delivery into the CNS. This scenario highlights CPPs with specific emphasis on their applicability as a novel theranostic delivery system into the brain.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 399 ◽  
Author(s):  
Catarina Chaves ◽  
Xavier Declèves ◽  
Meryam Taghi ◽  
Marie-Claude Menet ◽  
Joelle Lacombe ◽  
...  

The blood–brain barrier (BBB) hinders the brain delivery of many anticancer drugs. In pediatric patients, diffuse intrinsic pontine glioma (DIPG) represents the main cause of brain cancer mortality lacking effective drug therapy. Using sham and DIPG-bearing rats, we analyzed (1) the brain distribution of 3-kDa-Texas red-dextran (TRD) or [14C]-sucrose as measures of BBB integrity, and (2) the role of major ATP-binding cassette (ABC) transporters at the BBB on the efflux of the irinotecan metabolite [3H]-SN-38. The unaffected [14C]-sucrose or TRD distribution in the cerebrum, cerebellum, and brainstem regions in DIPG-bearing animals suggests an intact BBB. Targeted proteomics retrieved no change in P-glycoprotein (P-gp), BCRP, MRP1, and MRP4 levels in the analyzed regions of DIPG rats. In vitro, DIPG cells express BCRP but not P-gp, MRP1, or MRP4. Dual inhibition of P-gp/Bcrp, or Mrp showed a significant increase on SN-38 BBB transport: Cerebrum (8.3-fold and 3-fold, respectively), cerebellum (4.2-fold and 2.8-fold), and brainstem (2.6-fold and 2.2-fold). Elacridar increased [3H]-SN-38 brain delivery beyond a P-gp/Bcrp inhibitor effect alone, emphasizing the role of another unidentified transporter in BBB efflux of SN-38. These results confirm a well-preserved BBB in DIPG-bearing rats, along with functional ABC-transporter expression. The development of chemotherapeutic strategies to circumvent ABC-mediated BBB efflux are needed to improve anticancer drug delivery against DIPG.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 138 ◽  
Author(s):  
Paolo Giunchedi ◽  
Elisabetta Gavini ◽  
Maria Cristina Bonferoni

Nose-to-brain delivery represents a big challenge. In fact there is a large number of neurological diseases that require therapies in which the drug must reach the brain, avoiding the difficulties due to the blood–brain barrier (BBB) and the problems connected with systemic administration, such as drug bioavailability and side-effects. For these reasons the development of nasal formulations able to deliver the drug directly into the brain is of increasing importance. This Editorial regards the contributions present in the Special Issue “Nose-to-Brain Delivery”.


2016 ◽  
Vol 45 (17) ◽  
pp. 4690-4707 ◽  
Author(s):  
Benjamí Oller-Salvia ◽  
Macarena Sánchez-Navarro ◽  
Ernest Giralt ◽  
Meritxell Teixidó

Blood–brain barrier shuttle peptides are increasingly more potent and versatile tools to enhance drug delivery to the brain.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ying Zhang ◽  
Pan Guo ◽  
Zhe Ma ◽  
Peng Lu ◽  
Dereje Kebebe ◽  
...  

AbstractAlthough nanomedicine have greatly developed and human life span has been extended, we have witnessed the soared incidence of central nervous system (CNS) diseases including neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), ischemic stroke, and brain tumors, which have severely damaged the quality of life and greatly increased the economic and social burdens. Moreover, partial small molecule drugs and almost all large molecule drugs (such as recombinant protein, therapeutic antibody, and nucleic acid) cannot cross the blood–brain barrier. Therefore, it is especially important to develop a drug delivery system that can effectively deliver therapeutic drugs to the central nervous system for the treatment of central nervous system diseases. Cell penetrating peptides (CPPs) provide a potential strategy for the transport of macromolecules through the blood–brain barrier. This study analyzed and summarized the progress of CPPs in CNS diseases from three aspects: CPPs, the conjugates of CPPs and drug, and CPPs modified nanoparticles to provide scientific basis for the application of CPPs for CNS diseases.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139652 ◽  
Author(s):  
Sofie Stalmans ◽  
Nathalie Bracke ◽  
Evelien Wynendaele ◽  
Bert Gevaert ◽  
Kathelijne Peremans ◽  
...  

2021 ◽  
Vol 29 ◽  
Author(s):  
Lingyan Zuo ◽  
Weiqian Li ◽  
Jifang Shi ◽  
Yingzhen Su ◽  
Hongyan Shuai ◽  
...  

Background: Polyglutamine diseases are degenerative diseases in the central nervous system caused by CAG trinucleotide repeat expansion which encodes polyglutamine tracts, leading to the misfolding of pathological proteins. Small peptides can be designed to prevent polyglutamine diseases by inhibiting the polyglutamine protein aggregation, for example, polyglutamine binding peptide 1(QBP1). However, the transportation capability of polyglutamine binding peptide 1 across the blood-brain barrier is less efficient. We hypothesized whether its therapeutic effect could be improved by increasing the rate of membrane penetration. Objectives: The objective of the study was to explore whether polyglutamine binding peptide 1 conjugated cell-penetrating peptides could pass through the blood-brain barrier and inhibit the aggregation of polyglutamine proteins. Methods: n order to investigate the toxic effects, we constructed a novel stable inducible PC12 cells to express Huntington protein that either has 11 glutamine repeats or 63 glutamine repeats to mimic wild type and polyglutamine expand Huntington protein, respectively. Both SynB3 and TAT conjugated polyglutamine binding peptide 1 was synthesized, respectively, and we tested their capabilities to pass through a Trans-well system and subsequently studied the counteractive effects on polyglutamine protein aggregation. Results: The conjugation of cell-penetrating peptides to SynB3 and TAT enhanced the transportation of polyglutamine binding peptide 1 across the mono-cell layer and ameliorated polyglutamine-expanded Huntington protein aggregation; moreover, SynB3 showed better delivery efficiency than TAT. Interestingly, it has been observed that polyglutamine binding peptide 1 specifically inhibited polyglutamine-expanded protein aggregation rather than affected other amyloidosis proteins, for example, β-Amyloid. Conclusion: Our study indicated that SynB3 could be an effective carrier for polyglutamine binding peptide 1 distribution through the blood-brain barrier model and ameliorate the formation of polyglutamine inclusions, thus SynB3 conjugated polyglutamine binding peptide 1 could be considered as a therapeutic candidate for polyglutamine diseases.


2020 ◽  
Vol 12 (545) ◽  
pp. eaay1163 ◽  
Author(s):  
Julie C. Ullman ◽  
Annie Arguello ◽  
Jennifer A. Getz ◽  
Akhil Bhalla ◽  
Cathal S. Mahon ◽  
...  

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Sign in / Sign up

Export Citation Format

Share Document