The Effects of an Acute Bout of Moderate Intensity Exercise on Anger and EEG Responses During Elicitation of Angry Emotions

2010 ◽  
Vol 42 ◽  
pp. 59 ◽  
Author(s):  
Nathaniel J. Thom ◽  
Patrick J. O'Connor ◽  
Brett A. Clementz ◽  
Rod K. Dishman
2021 ◽  
Vol 33 (2) ◽  
pp. 82-89
Author(s):  
Yasmeen Mezil ◽  
Joyce Obeid ◽  
Inna Ushcatz ◽  
Sandeep Raha ◽  
Brian W. Timmons

Purpose: In girls and women, the authors studied the effects of an acute bout of low-impact, moderate-intensity exercise serum on myoblast and osteoblast proliferation in vitro. Methods: A total of 12 pre/early pubertal girls (8–10 y old) and 12 women (20–30 y old) cycled at 60% VO2max for 1 hour followed by 1-hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. C2C12 myoblasts and MC3T3E1 osteoblasts were incubated with serum from each time point for 1 hour, then monitored for 24 hours (myoblasts) or 36 hours (osteoblasts) to examine proliferation. Cells were also monitored for 6 days (myoblasts) to examine myotube formation and 21 days (osteoblasts) to examine mineralization. Results: Exercise did not affect myoblast or osteoblast proliferation. Girls exhibited lower cell proliferation relative to women at end of exercise (osteoblasts, P = .041; myoblasts, P = .029) and mid-recovery (osteoblasts, P = .010). Mineralization was lower at end of recovery relative to rest (P = .014) in both girls and women. Myotube formation was not affected by exercise or group. Conclusion: The systemic environment following one acute bout of low-impact moderate-intensity exercise in girls and women does not elicit osteoblast or myoblast activity in vitro. Differences in myoblast and osteoblast proliferation between girls and women may be influenced by maturation.


2016 ◽  
Vol 237 ◽  
pp. 264-270 ◽  
Author(s):  
Markus J. Duncan ◽  
Guy Faulkner ◽  
Gary Remington ◽  
Kelly Arbour-Nicitopoulos

2006 ◽  
Vol 28 (3) ◽  
pp. 285-299 ◽  
Author(s):  
Benjamin A. Sibley ◽  
Jennifer L. Etnier ◽  
Guy C. Le Masurier

Recent reviews of the literature have demonstrated that exercise has a positive impact on cognitive performance. The purpose of this study was to assess the impact of an acute bout of aerobic exercise on executive functioning in college-age adults. For the experimental intervention, the effects of 20 min of self-paced moderate-intensity exercise on a treadmill were compared to the effects of a 20-min sedentary control period. Executive functioning was assessed using Stroop color-word interference and negative priming tests. Results indicated that the bout of exercise led to improved performance on the Stroop color-word interference task but no change in performance on the negative priming task. This finding suggests that exercise may facilitate cognitive performance by improving the maintenance of goal-oriented processing in the brain.


2016 ◽  
Vol 38 (4) ◽  
pp. 396-408 ◽  
Author(s):  
Christopher J. Brush ◽  
Ryan L. Olson ◽  
Peter J. Ehmann ◽  
Steven Osovsky ◽  
Brandon L. Alderman

The purpose of this study was to examine possible dose–response and time course effects of an acute bout of resistance exercise on the core executive functions of inhibition, working memory, and cognitive flexibility. Twenty-eight participants (14 female; Mage = 20.5 ± 2.1 years) completed a control condition and resistance exercise bouts performed at 40%, 70%, and 100% of their individual 10-repetition maximum. An executive function test battery was administered at 15 min and 180 min postexercise to assess immediate and delayed effects of exercise on executive functioning. At 15 min postexercise, high-intensity exercise resulted in less interference and improved reaction time (RT) for the Stroop task, while at 180 min low- and moderate-intensity exercise resulted in improved performance on plus–minus and Simon tasks, respectively. These findings suggest a limited and task-specific influence of acute resistance exercise on executive function in healthy young adults.


2021 ◽  
Vol 11 (10) ◽  
pp. 1364
Author(s):  
Kefeng Zheng ◽  
Liye Zou ◽  
Gao-Xia Wei ◽  
Tao Huang

The purpose of the study was to systematically review the evidence on the effects of an acute bout of exercise on concurrent performance of core executive function (EF) during exercise in adults. Four electronic databases (i.e., PubMed, Web of Science, PsycINFO, and SportDiscus) were searched from inception dates to 30 December 2020. The literature searches were conducted using the combinations of two groups of relevant items related to exercise and executive function. Articles were limited to human studies in adults. The search process, study selection, data extraction, and study quality assessments were carried out independently by two researchers. A total of 4899 studies were identified. Twenty-two studies met our inclusion criteria. Of the 42 reported outcomes in the 22 studies, 13 (31%) of the 42 outcomes showed that core EF performance was enhanced during exercise and 14 (33%) found that core EF performance did not differ from control conditions. Fifteen (36%) found that core EF performance was impaired. Notably, improved EF performances tend to be observed during moderate-intensity exercise, whereas impaired EF performances were more likely to be observed at vigorous-high intensity. The review suggests mixed findings regarding the effects of an acute bout of exercise on concurrent performance of core EF. Exercise intensity seems to influence the effects. The underlying neural mechanisms remain to be elucidated.


2016 ◽  
Vol 41 (3) ◽  
pp. 284-291 ◽  
Author(s):  
Ariel M. Johnson ◽  
Stephanie P. Kurti ◽  
Joshua R. Smith ◽  
Sara K. Rosenkranz ◽  
Craig A. Harms

A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENOincreased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENOand TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.


1999 ◽  
Vol 9 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Daryll B. Bullen ◽  
Mary L. O'Toole ◽  
Karen C. Johnson

The purpose of this study was to compare daily calcium (Ca) losses in sweat (S) and urine (U) on an exercise day (E) with losses on the preceding day (i.e., a rest day) during which no exercise (NE) was performed. Ten healthy male volunteers (23.9 ± 3.2 years) performed a single bout of moderate exercise (running at 80% HRmax) for 45 min in a warm (32 °C, 58% relative humidity) environment on E. When E and NE were compared, neither Ca intake (1,232 ± 714 and 1,148 ±482 mg, respectively) nor urinary Ca excretion (206 ± 128 and 189 ± 130 mg, respectively) were different (p > .05). Sweat Ca losses during the exercise bout averaged 45 ± 12 mg. The results indicate that, although a small amount of Ca is lost in sweat during 45 min of moderate-intensity exercise, measured (sweat and urine losses combined) Ca losses (251 ±128 and 189 ± 130 mg) were not different (p > .05) between days (E and NE, respectively). These data suggest that moderate exercise for up to 45 min in a warm, humid environment does not markedly increase Ca intake requirements.


2020 ◽  
Vol 32 (3) ◽  
pp. 117-123
Author(s):  
Yasmeen Mezil ◽  
J. Obeid ◽  
Sandeep Raha ◽  
Thomas J. Hawke ◽  
Brian W. Timmons

Purpose: To assess the systemic effects of an acute bout of moderate-intensity exercise on factors that are known to regulate muscle and bone growth in prepubertal girls and women. Methods: A total of 12 prepubertal girls (8–10 y) and 12 women (20–30 y) cycled at 60% maximal oxygen uptake for 1 hour followed by 1 hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. Plasma was analyzed for interleukin-6, chemokine ligand 1, fibroblast growth factor-2, total insulin growth factor-1 (IGF-1), and free IGF-1 using enzyme-linked immunosorbent assays assays. Results: Both groups had similar concentrations of systemic factors at baseline with the exception of free IGF-1, which was higher in girls (P = .001). Interleukin-6 response was lower in girls versus women (P = .04), with a difference of +105.1% at end of exercise (P < .001), +113.5% at mid-recovery (P = .001), and +93.2% at end of recovery (P = .02). Girls and women exhibited significant declines in chemokine ligand 1, fibroblast growth factor-2, and total IGF-1 during recovery. Conclusion: Compared with women, an acute bout of moderate-intensity exercise in girls elicits a lower inflammatory response, suggesting that other mechanisms may be more important for driving the anabolic effects of exercise on muscle and bone in girls.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Sandra A. Billinger ◽  
Alicen A. Whitaker ◽  
Allegra Morton ◽  
Carolyn S. Kaufman ◽  
Sophy J. Perdomo ◽  
...  

Background The primary aim of this study was to characterize the middle cerebral artery blood velocity (MCAv) dynamic response to an acute bout of exercise in humans at 3‐ and 6‐months poststroke. As a secondary objective, we grouped individuals according to the MCAv dynamic response to the exercise bout as responder or nonresponder. We tested whether physical activity, aerobic fitness, and exercise mean arterial blood pressure differed between groups. Methods and Results Transcranial Doppler ultrasound measured MCAv during a 90‐second baseline followed by a 6‐minute moderate intensity exercise bout. Heart rate, mean arterial blood pressure, and end‐tidal CO 2 were additional variables of interest. The MCAv dynamic response variables included the following: baseline, time delay, amplitude, and time constant. Linear mixed model revealed no significant differences in our selected outcomes between 3‐ and 6‐months poststroke. Individuals characterized as responders demonstrated a faster time delay, higher amplitude, and reported higher levels of physical activity and aerobic fitness when compared with the nonresponders. No between‐group differences were identified for baseline, time constant, or exercise mean arterial blood pressure. In the nonresponders, we observed an immediate rise in MCAv following exercise onset followed by an immediate decline to near baseline values, while the responders showed an exponential rise until steady state was reached. Conclusions The MCAv dynamic response profile has the potential to provide valuable information during an acute exercise bout following stroke. Individuals with a greater MCAv response to the exercise stimulus reported statin use and regular participation in exercise.


1998 ◽  
Vol 30 (Supplement) ◽  
pp. 200
Author(s):  
D. B. Bullen ◽  
M. L. O'Toole ◽  
K. C. Johnson

Sign in / Sign up

Export Citation Format

Share Document