Application of near Infrared Spectroscopy for the Quantification of Quality Parameters in Selected Vegetables and Essential Oil Plants

1998 ◽  
Vol 6 (A) ◽  
pp. A125-A130 ◽  
Author(s):  
H. Schulz ◽  
H.-H. Drews ◽  
R. Quilitzsch ◽  
H. Krüger

The use of near-infrared (NIR) spectroscopy for the prediction of the essential oil content and composition in various umbelliferae genotypes was investigated. Furthermore an NIR method was developed for the quantification of total carotenoids and sugars present in different carrot varieties. Applying partial least square algorithm very good calibration statistics ( SECV, R2) were obtained for the prediction of the essential oil content in fennel (0.47, 0.83), caraway (0.29, 0.93), dill (0.30, 0.96) and coriander (0.29, 0.93). Satisfactory calibration results were received for the NIR determination of total carotenoids (1.54, 0.80) and of saccharose(0.74, 0.76) in carrots. The performed study demonstrates that NIR can be used to rapidly and accurately predict secondary metabolites such as carotenoids, anethole, fenchone, estragole, limonene and carvone occurring in vegetables and in fruits of various essential oil plants.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mohd Yusop Nurida ◽  
Dolmat Norfadilah ◽  
Mohd Rozaiddin Siti Aishah ◽  
Chan Zhe Phak ◽  
Syafiqa M. Saleh

The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.


2012 ◽  
Vol 58 (No. 4) ◽  
pp. 196-203 ◽  
Author(s):  
V. Dvořáček ◽  
A. Prohasková ◽  
J. Chrpová ◽  
L. Štočková

Non-invasive determination of deoxynivalenol (DON) still presents a challenging problem. Therefore, the present study was aimed at a rapid determination of DON in whole wheat grain by means of FT-NIR spectroscopy, with a wide range of concentrations for potential applications in breeding programs and common systems of quality management using partial least square calibration (PLS) and discriminant analysis technique (DA). Using a set of artificially infected wheat samples with a known content of DON, four PLS models with different concentration range were created. The broadest model predicting DON in the concentration range of 0&ndash;90 mg/kg possessed the highest correlation coefficients of calibration and cross validation (0.94 and 0.88); but also possessed the highest prediction errors (SEP = 6.23 mg/kg). Thus the subsequent combination of DA as the wide range predictive model and the low-range PLS model was used. This technique gave more precise results in the samples with lower DON concentrations &ndash; below 30 mg/kg (SEP = 2.35 mg/kg), when compared to the most wide-range PLS model (SEP = 5.95 mg/kg).<br />Such technique enables to estimate DON content in collections of artificially infected wheat plants in Fusarium resistance breeding experiments. &nbsp;


2012 ◽  
Vol 499 ◽  
pp. 414-418
Author(s):  
Tao Pan ◽  
Zhen Tao Wu ◽  
Jie Mei Chen

Near-infrared (NIR) spectroscopy was successfully applied to chemical free and rapid determination of the organic matter in soil, and moving window partial least square (MWPLS) combining with Savitzky-Golay (SG) smoothing was used to the selection of NIR waveband. Thirty-five samples were randomly selected from all 97 collected soil samples as the validation set. The remaining 62 samples were divided into similar modeling calibration set (37 samples) and modeling prediction set (25 samples) based on partial least square cross-validation predictive bias (PLSPB). The selected waveband was 1896 nm to 2138 nm; the SG smoothing parameters and PLS factor OD, DP, NSP and F were 2, 6, 71 and 15, respectively; the modeling effect M-SEP and M-RPwere 0.219% and 0.944, respectively; the validating effect V-SEP and V-RPwere 0.243% and 0.878, respectively. The result provided a reliable NIR model and valuable references for designing specialized NIR instruments.


2021 ◽  
Vol 13 (19) ◽  
pp. 10747
Author(s):  
Khadija Najjar ◽  
Nawaf Abu-Khalaf

The non-destructive visible/near-infrared (VIS/NIR) spectroscopy is a promising technique in determining the quality of agricultural commodities. Therefore, this study aimed to examine the ability of VIS/NIR spectroscopy (550–1100 nm) to distinguish between three different varieties of tomato (i.e., Ekram, Harver and Izmer), as well as to predict the quality parameters of tomato, such as soluble solids content (SSC), titratable acidity (TA), taste (SSC/TA) and firmness. Ninety intact samples from three tomato varieties were used. These samples were examined using VIS/NIR spectroscopy and quality parameters were also measured using traditional methods. Principal component analysis (PCA) and partial least square (PLS) were carried out. The results of PCA showed the ability of VIS/NIR spectroscopy to distinguish between the three varieties, where two PCs explained about 99% of the total variance in both calibration and validation sets. Moreover, PLS showed the possibility of modelling quality parameters. The correlation coefficient (R2) and the ratio of performance deviation (RPD) for all quality parameters (except for firmness) were found to be higher than 0.85 and 2.5, respectively. Thus, these results indicate that the VIS/NIR spectroscopy can be used to discriminate between different varieties of tomato and predict their quality parameters.


2011 ◽  
Vol 345 ◽  
pp. 128-133
Author(s):  
Hong Zhi Gao ◽  
Qi Peng Lu ◽  
Fu Rong Huang

In order to determination of cholesterol in human serum with no reagent using near-infrared (NIR) spectroscopy. Interval partial least square (iPLS) was proposed as an effective variable selection approach for multivariate calibration. For this purpose, an independent sample set was employed to evaluate the prediction ability of the resulting model. The spectrum was split into different interval. Then, the informative region of cholesterol (1688-1760nm), in which the PLS model has a low RMSEP with 0.241mmol/L and a high R with 0.975, is selected with 23 intervals. The results indicate that, the informative region of cholesterol can be obtained by iPLS and applied to design the simpler reagentless NIR instruments for inexpensive cholesterol measurement in future.


2010 ◽  
Vol 152-153 ◽  
pp. 77-80
Author(s):  
Wei Li ◽  
Wei Jia Gao ◽  
Ping Chen ◽  
Bao Lei Sun

A near-infrared spectroscopy (NIR) technique has been applied for rapid and nondestructive quality determination of glass/epoxy prepreg. Abundant information related with resin and volatile was observed in the NIR spectra of the prepreg cloth. The partial least square (PLS) regression was used to develop the calibration models by utilizing several spectral pretreatments combined with different spectra ranges. Some unknown samples were analyzed by the NIR method. The mean absolute predicted errors were 0.32% and 0.214% for the resin content and the volatile content respectively. The results of the paired t-test revealed that there was no significant difference between the NIR method and standard method. The NIR method can be used to predict the resin and volatile content simultaneously within 30s. The study indicates that the NIR method is sufficiently for quality determination of glass/epoxy prepreg cloth.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2195
Author(s):  
Lucas de Paula Corrêdo ◽  
Leonardo Felipe Maldaner ◽  
Helizani Couto Bazame ◽  
José Paulo Molin

Proximal sensing for assessing sugarcane quality information during harvest can be affected by various factors, including the type of sample preparation. The objective of this study was to determine the best sugarcane sample type and analyze the spectral response for the prediction of quality parameters of sugarcane from visible and near-infrared (vis-NIR) spectroscopy. The sampling and spectral data acquisition were performed during the analysis of samples by conventional methods in a sugar mill laboratory. Samples of billets were collected and four modes of scanning and sample preparation were evaluated: outer-surface (‘skin’) (SS), cross-sectional scanning (CSS), defibrated cane (DF), and raw juice (RJ) to analyze the parameters soluble solids content (Brix), saccharose (Pol), fibre, pol of cane and total recoverable sugars (TRS). Predictive models based on Partial Least Square Regression (PLSR) were built with the vis-NIR spectral measurements. There was no significant difference (p-value > 0.05) between the accuracy SS and CSS samples compared to DF and RJ samples for all prediction models. However, DF samples presented the best predictive performance values for the main sugarcane quality parameters, and required only minimal sample preparation. The results contribute to advancing the development of on-board quality monitoring in sugarcane, indicating better sampling strategies.


2021 ◽  
pp. 096703352098731
Author(s):  
Adenilton C da Silva ◽  
Lívia PD Ribeiro ◽  
Ruth MB Vidal ◽  
Wladiana O Matos ◽  
Gisele S Lopes

The use of alcohol-based hand sanitizers is recommended as one of several strategies to minimize contamination and spread of the COVID-19 disease. Current reports suggest that the virucidal potential of ethanol occurs at concentrations close to 70%. Traditional methods of verifying the ethanol concentration in such products invite potential errors due to the viscosity of chemical components or may be prohibitively expensive to undertake in large demand. Near infrared (NIR) spectroscopy and chemometrics have already been used for the determination of ethanol in other matrices and present an alternative fast and reliable approach to quality control of alcohol-based hand sanitizers. In this study, a portable NIR spectrometer combined with classification chemometric tools, i.e., partial least square discriminant analysis (PLS–DA) and linear discriminant analysis with successive algorithm projection (SPA–LDA) were used to construct models to identify conforming and non-conforming commercial and laboratory synthesized hand sanitizer samples. Principal component analysis (PCA) was applied in an exploratory data study. Three principal components accounted for 99% of data variance and demonstrate clustering of conforming and non-conforming samples. The PLS–DA and SPA–LDA classification models presented 77 and 100% of accuracy in cross/internal validation respectively and 100% of accuracy in the classification of test samples. A total of 43% commercial samples evaluated using the PLS–DA and SPA–LDA presented ethanol content non-conforming for hand sanitizer gel. These results indicate that use of NIR spectroscopy and chemometrics is a promising strategy, yielding a method that is fast, portable, and reliable for discrimination of alcohol-based hand sanitizers with respect to conforming and non-conforming ethanol concentrations.


1995 ◽  
Vol 78 (3) ◽  
pp. 802-806 ◽  
Author(s):  
José Louis Rodriguez-Otero ◽  
Maria Hermida ◽  
Alberto Cepeda

Abstract Near-infrared reflectance (NIR) spectroscopy was used to analyze fat, protein, and total solids in cheese without any sample treatment. A set of 92 samples of cow’s milk cheese was used for instrument calibration by principal components analysis and modified partial least-square regression. The following statistical values were obtained: standard error of calibration (SEC) = 0.388 and squared correlation coefficient (R2) = 0.99 for fat, SEC = 0.397 and R2 = 0.98 for protein, and SEC = 0.412 and R2 = 0.99 for total solids. To validate the calibration, an independent set of 25 cheese samples of the same type was used. Standard errors of validation were 0.47,0.50, and 0.61 for fat, protein, and total solids, respectively, and hf for the regression of measurements by reference methods versus measurements by NIR spectroscopy was 0.98 for the 3 components.


Sign in / Sign up

Export Citation Format

Share Document