scholarly journals Recent Status of Geothermal Energy Applications in Turkey

2005 ◽  
Vol 23 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Mustafa Balat

This article considers recently status of geothermal energy in Turkey. Turkey is the 7th richest country in the world in geothermal potential. The overall geothermal potential in Turkey is about 38,000 MW. But only 2% of its potential is used. Geothermal electricity generation has a minor role in Turkey's electricity capacity as low as 0.09% but the projections foresee an improvement to 0.32% by the year of 2020. Most of the geothermal sites for electricity generation are located in Aydin–Germencik (505 K), Denizli–Kizildere (515 K), Aydin–Salavatli (444 K), Canakkale–Tuzla (446 K) and Kutahya–Simav (435 K). Turkey has increased their installed capacity over the past five years from 140 MWt to 820 MWt, most for district heating systems. This supplies heat to 51,600 equivalent residences and engineering design to supply a further 150,000 residences with geothermal heat is complete.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 619 ◽  
Author(s):  
Johannes Röder ◽  
David Beier ◽  
Benedikt Meyer ◽  
Joris Nettelstroth ◽  
Torben Stührmann ◽  
...  

In future energy scenarios with a high share of renewable energies within the electricity system, power-to-heat technologies could play a crucial role for achieving the climate goals in the heating sector. District heating systems can integrate volatile wind and photovoltaic energy sources and resolve congestions within the electricity grid, leading to curtailment of renewable electricity generation. This paper presents a design approach for setting up system-beneficial power-to-heat-based district energy systems. Within the scope of the project QUARREE100 an existing district in the provincial town Heide in Northern Germany is examined. A linear investment and unit commitment optimization model is applied. By considering local dynamic emission factors for grid-sourced electricity, which contain information on local wind energy curtailment as well as the emission intensity of the overall electricity generation, a renewable and system-beneficial design can be derived. With this method, the minimal rated power and capacity of energy converter and storage units can be determined to achieve emission reductions with respect to minimum costs. The approach of using different methods for the consideration of the emissions of grid-sourced electricity is analyzed based on different scenarios. By using a dynamic emission factor for grid-sourced electricity, lower emissions with fewer costs can be achieved. It is shown that a dynamic assessment leads to different design decisions and far-reaching deviations in the unit commitment. The results clearly show that a constant emission factor is no longer an option for grid-sourced electricity in urban energy system models.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1265 ◽  
Author(s):  
Cristina Sáez Blázquez ◽  
Arturo Farfán Martín ◽  
Ignacio Nieto ◽  
Diego González-Aguilera

2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Effrosyni Varvitsioti ◽  
Georgios Tsifoutidis

Greece is gifted with geologic features that promote geothermal heat flow. Geothermal energy exploration began in the late 60s, culminating in the first geothermal energy law in 1984 and the introduction of geothermal energy as a mineral resource under the amendment of the Greek Mining Code. Since then, low- and high-temperature geothermal activities followed their separate ways, with a modest utilization of the energy product in the primary sector (agriculture, aquaculture) and attempts for electricity production stalled since the mid-1990s. The adoption of green policies by both the EU and Greece, the acceptance of global warming as an existing threat, the adhesion to CO2 reduction goals, energy efficiency and the application on renewable energy solutions as means to combat the increase in global temperature have led to an increasing interest in the utilization of the geothermal energy applications. This paper presents the new legal framework for geothermal energy established by Law 4602/2019, as introduced by the Greek Ministry of Environment and Energy, Directorate-General for Mineral Raw Materials and discusses its scope and goals set by the implementation of its provisions. The paper offers a roadmap to successfully test those new policies and regulatory provisions and, finally, it maps the interfaces of stakeholders and geothermal industry in an attempt to highlight the steps of the necessary administrative procedures towards the facilitation of viable geothermal projects.


2021 ◽  
Vol 288 ◽  
pp. 01089
Author(s):  
Alexei Sednin ◽  
Aliaksandr Mukhin ◽  
Boris Balakin

Future district heating systems need to be more flexible and move towards a carbon-neutral generation. Compression heat pumps are foreseen to be promising future tools for district heating systems in EU countries. The paper presents the simulation data or a vertical double-pipe geothermal heat exchanger with ethylene glycol-Al2O3 as a working fluid. To simulate the operation of the heat exchanger, the STAR-CCM + CFD application was used. It has been determined the optimal volume particle concentrations of nanofluid and enhance of heat exchanger performance.


2021 ◽  
Author(s):  
Virginie Hamm ◽  
Laure Capar ◽  
Perrine Mas ◽  
Philippe Calcagno ◽  
Séverine Caritg-Monnot

<p>In Ile-de-France region, in the center of Paris Basin, geothermal energy contributes to a large extent to the supply of heating networks with about 50 of the 70 deep geothermal installations dedicated to district heating in France. Those installations mainly exploit the Dogger limestones between 1500-2000 m deep, which are present throughout the Paris Basin. In the case of Centre Val-de Loire region, south of Paris Basin, deep geothermal energy is very little developed, only one geothermal well is currently in operation and targeting the Triassic aquifer at Chateauroux on the southern edge of the basin. A former doublet had also targeted the Trias at Melleray (Orléans metropolis) in the 1980’s but was shut down after one year due to reinjection problem.</p><p>In 2019, Orléans metropolis, in collaboration with BRGM, has launched a program in order to investigate its deep geothermal resources like the Dogger and Trias aquifers between 900 m and 1500 m deep. This action is in line with Orléans métropolis Territorial Climate Air Energy Plan (PCAET) and master plan for the heating networks adopted which foresee 65 000 additional dwellings to be connected using geothermal energy based heating networks.</p><p>In order to reduce the risks of failure of deep geothermal drilling, one of the prerequisites is a better knowledge of the subsurface. This requires the development of an accurate 3D subsurface geomodel as well as the most reliable possible hydrodynamic and thermal parameters to assess the geothermal potential. The purpose of this work was to produce a 3D geological model of the Dogger and Triassic units, on the scale of Orléans Metropolis, based on hydrocarbon and geothermal well data as well as interpretation of 2D seismic data. Seismic data acquired in the 1960s and the 1980s were processed and interpreted. A particular attention was paid to the Sennely fault and its geometry. It crosses the study area and was interpreted as a relay fault segmented in three parts. The horizon picking points were then converted from two-way time to depth and integrated in the GeoModeller software for the development of the 3D geomodel. It was then used for first hydrothermal simulations in order to assess the theorical potential of the Dogger and Trias aquifers at Orléans metropolis.</p><p>The 3D geomodel and first geothermal potential assessment have allowed defining areas of interest for geothermal development into the Dogger or Trias. However an initial exploratory drilling well or additional exploration techniques will be necessary to confirm/specify the reservoir properties (useful thickness, porosity, permeability) and the connectivity of the reservoir(s) and the flow rates that can actually be exploited, which cannot be predicted by the current geological model.</p>


Author(s):  
Emmanuel Yeri Kombe ◽  
Joseph Muguthu

The East African Rift is among the most crucial regions of the world endowed with a remarkable geothermal potential. Using current technologies, East African countries have a geothermal power potential of more than 15,000 MWe. Nevertheless, the zone is still at an early stage of geothermal development with few plants producing a few hundred MWe. Among East African countries that have carried out research on geothermal resources, Kenya is leading in utilising geothermal energy resources for electricity generation. Eritrea, Uganda, Tanzania and Djibouti are at exploration stage while Malawi and Rwanda have so far not gone past geothermal resource potential record work. This study sought to address the challenges and barriers to the adoption of geothermal energy as well as the strategies to implement geothermal energy plans in East Africa.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1302 ◽  
Author(s):  
Leszek Pająk ◽  
Barbara Tomaszewska ◽  
Wiesław Bujakowski ◽  
Bogusław Bielec ◽  
Marta Dendys

The paper presents a review of the geological and hydrogeological data of the Lower Cretaceous aquifer in the Polish Lowlands and discusses the possibilities for the utilisation of geothermal water resources in existing and new district heating systems. Based on experience related to the use of thermal waters in existing geothermal systems, and using data from the literature, assessments have been made of the energy and environmental effects of the application of low-enthalpy geothermal resources from the Lower Cretaceous aquifer as a source of heat for urban district heating systems. The authors concluded that the implementation of such solutions could result in the production of approximately 4 PJ of geothermal energy annually. To date, these resources have only been developed in three locations—Mszczonów, Uniejów and Poddębice—with the total amount of energy generated annually reaching 100 TJ/year. Similar district heating networks in 120 nearby localities have been also identified. Here, specified geological and hydrogeological conditions enable the extraction of heat from the investigated Lower Cretaceous aquifer, with the aim of using this for heating purposes. To achieve this goal, multiple measures are required, including the following: raising public awareness through appropriate education programmes aimed at the youngest school children; systemic, efficient energy management measures at the central, regional and local levels, and providing financial support and ensuring regulations and laws aimed at improving the development of geothermal resources.


2020 ◽  
Author(s):  
Alison Monaghan ◽  
Vanessa Starcher ◽  
Hugh Barron ◽  
Corinna Abesser ◽  
Brighid O Dochartaigh ◽  
...  

<p>Mine water geothermal heat production and storage can provide a decarbonised source of energy for space heating and cooling, however the large resource potential has yet to be exploited widely. Besides economic, regulatory and licensing barriers, the geoscientific uncertainties remain significant. A lack of detailed understanding of thermal and hydrogeological subsurface conditions and processes, resource sustainability, and the potential impacts on the subsurface-to-surface environmental impacts have so far hampered a more widespread development of this resource.</p><p>The British Geological Survey (BGS) is in the final stages of constructing the Glasgow Geothermal Energy Research Field Site on behalf of the Natural Environment Research Council with UK Government funding. As one of the two new UK Geoenergy Observatories, the Glasgow site will facilitate collaborative research to improve our understanding of subsurface processes and change. It will provide scientific infrastructure for investigating the shallow, low-temperature coal mine water geothermal energy resources available in abandoned and flooded mine workings at depths of around 50-90 m below the eastern parts of the city.</p><p>The Glasgow site was chosen due to its commonalities with other parts of the UK and beyond in terms of its coal mining history, geology and legacy of industrial land use. Mine water geothermal resources in these settings could provide sufficient heat for community-scale district heating networks.</p><p>The research infrastructure comprises arrays of mine water and environmental baseline boreholes for characterisation and monitoring, and the boreholes are instrumented with permanent geophysical sensors. Here we report on interim results from drilling the environmental baseline and mine water boreholes, and opportunities for research and innovation.</p><p>Continuous monitoring and regular sampling data will be provided for the science community to examine a dynamic subsurface geo-, hydro- and bio-sphere. The facility will also provide opportunities for researchers to undertake their own experiments, with the aim of producing high-quality scientific evidence to reduce uncertainty on mine heat energy systems and understand their environmental impacts, for schemes across the UK and beyond.</p>


Author(s):  
JG Gluyas ◽  
CA Adams ◽  
JP Busby ◽  
J Craig ◽  
C Hirst ◽  
...  

In 2015, the primary energy demand in the UK was 202.5 million tonnes of oil equivalent (mtoe = 848 EJ). Of this, about 58 mtoe (2.43 EJ) was used for space heating. Almost all of this heat was from burning fossil fuels either directly (50% of all gas used is for domestic purposes) or indirectly for power generation. Burning fossil fuels for heat released about 160 million tonnes of carbon dioxide in 2015. The UK must decarbonise heating for it to meet its commitments on emissions reduction. UK heat demand can be met from ultra-low-carbon, low enthalpy geothermal energy. Here we review the geothermal potential of the UK, comprising a combination of deep sedimentary basins, ancient warm granites and shallower flooded mines. A conservative calculation of the contained accessible heat in these resources is 200 EJ, about 100 years supply. Presently only one geothermal system is exploited in the UK. It has been supplying about 1.7MWT (heat) to Southampton by extracting water at a temperature of 76 ℃ from a depth of 1.7 km in the Wessex Basin. Like Southampton, most of the major population centres in the UK lie above or adjacent to major geothermal heat sources. The opportunity for using such heat within district heating schemes is considerable. The consequences of developing a substantial part of the UK’s geothermal resource are profound. The baseload heating that could be supplied from low enthalpy geothermal energy would cause a dramatic fall in the UK’s emissions of greenhouse gases, reduce the need for separate energy storage required by the intermittent renewables (wind and solar) and underpin a significant position of the nation’s energy security for the foreseeable future, so lessening the UK’s dependence on imported oil and gas. Investment in indigenous energy supplies would also mean retention of wealth in the UK.


2016 ◽  
Vol 20 (4) ◽  
pp. 1061-1071 ◽  
Author(s):  
Danijela Urbancl ◽  
Peter Trop ◽  
Darko Goricanec

The paper presents economically evaluated solutions for heating greenhouses with geothermal potential, if the same greenhouse is placed in two different locations in Southeastern Europe, one in Slovenia and the other in Serbia. The direct geothermal water exploitation using heat exchangers is presented and the remaining heat potential of already used geothermal water is exploited using high temperature heat pumps. Energy demands for heating greenhouses are calculated considering climatic parameters of both locations. Furthermore, different constructions materials are taken into account, and energy demands are evaluated if the same greenhouse is made of 4 mm toughened single glass, double insulated glass or polycarbonate plates. The results show that the geothermal energy usage is economically feasible in both locations, because payback periods are in range from two to almost eight years for different scenarios.


Sign in / Sign up

Export Citation Format

Share Document