Characterisation of the Dogger and Trias deep ressources in Orléans Métropolis, Centre-Val de Loire region, France : 3D geomodel and first geothermal potential assessment

Author(s):  
Virginie Hamm ◽  
Laure Capar ◽  
Perrine Mas ◽  
Philippe Calcagno ◽  
Séverine Caritg-Monnot

<p>In Ile-de-France region, in the center of Paris Basin, geothermal energy contributes to a large extent to the supply of heating networks with about 50 of the 70 deep geothermal installations dedicated to district heating in France. Those installations mainly exploit the Dogger limestones between 1500-2000 m deep, which are present throughout the Paris Basin. In the case of Centre Val-de Loire region, south of Paris Basin, deep geothermal energy is very little developed, only one geothermal well is currently in operation and targeting the Triassic aquifer at Chateauroux on the southern edge of the basin. A former doublet had also targeted the Trias at Melleray (Orléans metropolis) in the 1980’s but was shut down after one year due to reinjection problem.</p><p>In 2019, Orléans metropolis, in collaboration with BRGM, has launched a program in order to investigate its deep geothermal resources like the Dogger and Trias aquifers between 900 m and 1500 m deep. This action is in line with Orléans métropolis Territorial Climate Air Energy Plan (PCAET) and master plan for the heating networks adopted which foresee 65 000 additional dwellings to be connected using geothermal energy based heating networks.</p><p>In order to reduce the risks of failure of deep geothermal drilling, one of the prerequisites is a better knowledge of the subsurface. This requires the development of an accurate 3D subsurface geomodel as well as the most reliable possible hydrodynamic and thermal parameters to assess the geothermal potential. The purpose of this work was to produce a 3D geological model of the Dogger and Triassic units, on the scale of Orléans Metropolis, based on hydrocarbon and geothermal well data as well as interpretation of 2D seismic data. Seismic data acquired in the 1960s and the 1980s were processed and interpreted. A particular attention was paid to the Sennely fault and its geometry. It crosses the study area and was interpreted as a relay fault segmented in three parts. The horizon picking points were then converted from two-way time to depth and integrated in the GeoModeller software for the development of the 3D geomodel. It was then used for first hydrothermal simulations in order to assess the theorical potential of the Dogger and Trias aquifers at Orléans metropolis.</p><p>The 3D geomodel and first geothermal potential assessment have allowed defining areas of interest for geothermal development into the Dogger or Trias. However an initial exploratory drilling well or additional exploration techniques will be necessary to confirm/specify the reservoir properties (useful thickness, porosity, permeability) and the connectivity of the reservoir(s) and the flow rates that can actually be exploited, which cannot be predicted by the current geological model.</p>

2020 ◽  
Author(s):  
Estelle Petitclerc ◽  
Pierre Gerard ◽  
Xavier Devleeschouwer ◽  
Bertrand François ◽  
Marijke Huysmans ◽  
...  

<p>In 2015, a legal framework was implemented in the Brussels-Capital Region (BCR) where passive construction has been mandatory with an obliged heat demand not exceeding 15 kW<sub>h</sub>/m<sup>2</sup>. Since 2015, the interest in installing shallow geothermal systems has significantly increased. However, limited knowledge of ground conditions, lack of public awareness and the urban nature of the Brussels area restrict the development of shallow geothermal systems despite the high potential of this technique in the RBC. The BRUGEO project aims to facilitate accessibility and the efficient use of shallow geothermal energy in the BCR specifically for commercial and residential sectors. Thanks to Brussels ERDF (European Regional Development Fund) funding a consortium of all major actors in geothermal energy were brought together (ULB, Brussels Environment, BBRI, VUB, and GSB). During the  four years project (2016-2020), specific actions promoting the geothermal potential were addressed: 1- Collect existing data related to the knowledge on Brussels subsurface (geological, hydrogeological, and geothermal data) and consolidate them in a single database; 2- Conduct new laboratory and field tests in order to complete geological analyses and to assess geothermal parameters; 3- Map the geothermal potential for open and closed systems. The Geological Survey of Belgium (GSB) has created, during the last 7 years, a GIS based 2D-3D geological model of the BCR underground. 9266 drillings and geotechnical data collected in and around the BCR have been used to create the Brustrati3D model generating interpolated top and base surfaces for 19 geological layers representing the whole lithostratigraphic sequence from Quaternary to the Paleozoic basement. An important exploration phase was included in the first two years of the BRUGEO project to acquire new data improving the geological and hydrogeological knowledge of BCR. Several in-situ parameters are measured by e.g. new piezometers implementation and monitoring, pumping tests, cores sampling, logging and enhanced thermal response tests (eTRT). These measurements are implemented as far as possible on future private projects by a win-win approach. The idea is to be grafted on existing projects to increase the data acquisition and to avoid purely exploratory drilling that are expensive and not used later for any geothermal exploitation. So far, the BRUGEO consortium has also conducted three exploration drillings to assess the lithology, the structure, the groundwater flows, and geophysical properties of the Cambrian basement (Brabant Massif). In parallel, laboratory measurements are achieved to characterize the determinant thermal parameters of the Brussels underground. From all the subsurface data collected, the BRUGEO consortium aims at mapping the geothermal potential of the BCR. This web-based mapping, accessible to design offices, installers of geothermal systems, citizens, public and private stakeholders or regional and municipalities administrations, will make it easier to foster the use of geothermal energy. The web portal will consist of an interactive decision support and a design tool based on maps built thanks to the geoscientific 3D models and geothermal parameters assessed during BRUGEO. The results are expected to be published online in March 2020.</p>


2019 ◽  
Vol 251 ◽  
pp. 113367 ◽  
Author(s):  
Jann Michael Weinand ◽  
Max Kleinebrahm ◽  
Russell McKenna ◽  
Kai Mainzer ◽  
Wolf Fichtner

Author(s):  
Daniel P. Smith

Abstract This article attempts to identify the main ‘above-ground’ factors which impact on the contribution that geothermal energy can make to the Dutch Energy Transition, and to draw conclusions about these factors. Recent literature sources are used to illustrate the size of Dutch heating demand, and the part of this which can be provided by geothermal energy. Consideration is given to the impact of off-take variability over time, showing that the base-load nature of geothermal doublets acts as a restraint on the share which they can take in the energy supply. The characteristics of district heating grids are discussed. Other potential sources of heat are considered and compared. The conclusion is that geothermal energy can provide a material contribution to the energy transition. This depends to a large extent on the existence of and design choices made for the development of district heating networks. Large size and standardisation, and the development of seasonal heat storage, are beneficial. Unlike most other renewable sources of heat, which have alternative ‘premium’ applications such as the provision of ‘peak capacity’ or molecules for feedstock, geothermal energy is not suitable for other uses. The emission savings that it can provide will be lost if other heat sources are chosen in preference as supply for district heating, so that it makes sense that district heating infrastructure should be designed to encourage the use of geothermal energy where possible.


2005 ◽  
Vol 23 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Mustafa Balat

This article considers recently status of geothermal energy in Turkey. Turkey is the 7th richest country in the world in geothermal potential. The overall geothermal potential in Turkey is about 38,000 MW. But only 2% of its potential is used. Geothermal electricity generation has a minor role in Turkey's electricity capacity as low as 0.09% but the projections foresee an improvement to 0.32% by the year of 2020. Most of the geothermal sites for electricity generation are located in Aydin–Germencik (505 K), Denizli–Kizildere (515 K), Aydin–Salavatli (444 K), Canakkale–Tuzla (446 K) and Kutahya–Simav (435 K). Turkey has increased their installed capacity over the past five years from 140 MWt to 820 MWt, most for district heating systems. This supplies heat to 51,600 equivalent residences and engineering design to supply a further 150,000 residences with geothermal heat is complete.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yonghui Huang ◽  
Yuanzhi Cheng ◽  
Lu Ren ◽  
Fei Tian ◽  
Sheng Pan ◽  
...  

Assessment of available geothermal resources in the deep oil field is important to the synergy exploitation of oil and geothermal resources. A revised volumetric approach is proposed in this work for evaluating deep geothermal potential in an active oil field by integrating a 3D geological model into a hydrothermal (HT)-coupled numerical model. Based on the analysis of the geological data and geothermal conditions, a 3D geological model is established with respect to the study area, which is discretized into grids or elements represented in the geological model. An HT-coupled numerical model was applied based on the static geological model to approximate the natural-state model of the geothermal reservoir, where the thermal distribution information can be extracted. Then the geothermal resource in each small grid element is calculated using a volumetric method, and the overall geothermal resource of the reservoirs can be obtained by making an integration over each element of the geological model. A further parametric study is carried out to investigate the influence of oil and gas saturations on the overall heat resources. The 3D geological model can provide detailed information on the reservoir volume, while the HT natural-state numerical model addressed the temperature distribution in the reservoir by taking into account complex geological structures and contrast heterogeneity. Therefore, integrating the 3D geological modeling and HT numerical model into the geothermal resource assessment improved its accuracy and helped to identify the distribution map of the available geothermal resources, which indicate optimal locations for further development and utilization of the geothermal resources. The Caofeidian new town Jidong oil field serves as an example to depict the calculation workflow. The simulation results demonstrate in the Caofeidian new town geothermal reservoir that the total amount of geothermal resources, using the proposed calculation method, is found to be 1.23e+18 J, and the total geothermal fluid volume is 8.97e+8 m3. Moreover, this approach clearly identifies the regions with the highest potential for geothermal resources. We believe this approach provides an alternative method for geothermal potential assessment in oil fields, which can be also applied globally.


2021 ◽  
Author(s):  
Tanja Petrović Pantić ◽  
Katarina Atanasković Samolov ◽  
Jana Štrbački ◽  
Milan Tomić

Abstract In order to collect and unify data about all geothermal resources in Serbia, a database is formed. The database allows us to perceive the geothermal resources of Serbia and their potential for utilization. Based on the data available in the geothermal database, the estimated temperatures of reservoirs, heat power, and geothermal energy utilization were calculated. The database contains 293 objects (springs, boreholes) registered at 160 locations with groundwater temperature in the range between 20°C and 111°C. The maximum expected temperature of the reservoir is 146°C (according to the SiO2 geothermometer). Some thermal water is cooled while mixed with cold, shallow water. Geothermal resources are mostly used for balneology and recreation, and less for heating, water supply, bottling, fish and animal farms, agriculture, and technical water. 26% of all geothermal resources is used by the local population or has not been used at all. The annual utilization of geothermal energy for direct heat is 1507 TJ/yr, and the estimated capacity of geothermal energy in Serbia is 111 MWt. The results of analytical work were presented in the form of maps with a geological and hydrogeological background. Thermal waters are mostly registrated in the area of Tertiary magmatism. The three geothermal potential areas are identified: Pannonian basin-Vojvodina Province, Mačva-Srem and area from Jošanička Banja to Vranjska Banja (southern Serbia). Based on chemical analyses, four hydrochemical facies are distinguished. Thermal water mainly belongs to NaHCO3 or CaMgHCO3 hydrochemical facies, usually depending on the primary aquifer: karst, karst-fissured, intergranular or fissured.


2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 4083-4093
Author(s):  
Stefan Denda ◽  
Jasna Micic ◽  
Ana Milanovic-Pesic ◽  
Jovana Brankov ◽  
Zeljko Bjeljac

Despite the significant natural potential, geothermal energy in Serbia has traditionally been used in balneology and recreation, while its share in the country?s total energy balance is almost negligible (0.05%). The present paper deals with the City Municipality of Vranjska Banja as a pioneer in the territory of Serbia in using geothermal energy for heating. The concept and methodology of the present research are directly related to the utilization of geothermal resources for district heating in the Vranjska Banja area. The presented analysis includes: determining the available amount of energy, identifying the energy needs of selected public facilities, and the estimation of investment necessary for energy utilization. A survey, combined with field research, is focused on four public facilities connected to the heating system relying on geothermal sources, as well as on two facilities that should be connected to the system in the next phases. The results show economic, ecological, and technological advantages of using geothermal heating systems, as well as the acceptable price of equipment maintenance. An economic assessment of the transition of one facility from the existing heating system to a system relying on geothermal energy has also been made. The analysis confirms the cost-effectiveness of using geothermal energy and reveals numerous ecological advantages (safe heating, absence of CO2 emission) over other energy sources.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3942
Author(s):  
Kacper Domagała ◽  
Tomasz Maćkowski ◽  
Michał Stefaniuk ◽  
Beata Reicher

Important factors controlling the effective utilization of geothermal energy are favorable reservoir properties of rock formations, which determine both the availability and the transfer opportunities of reservoir fluids. Hence, crucial to the successful utilization of a given reservoir is the preliminary recognition of distribution of reservoir parameters as it enables the researchers to select the prospective areas for localization of future geothermal installations and to decide on their characters. The objectives of this paper are analyses and discussion of the properties of quartz sandstones buried down to a depth interval from about 3000 to under 5000 m below surface. These sandstones belong to Ediacaran–Lowery Cambrian Łeba, Kluki and Żarnowiec formations. The source data from the Słupsk IG-1 provided the basis for 1D reconstruction of burial depth and paleothermal conditions as well as enabled the authors to validate of the results of 2D models. Then, porosity distribution within the reservoir formation was determined using the modelings of both the mechanical and chemical compactions along the 70 km-long B’-B part of the A’-A cross-section Bornholm-Słupsk IG-1 well. The results confirmed the low porosities and permeabilities as well as high temperatures of the analyzed rock formations in the Słupsk IG-1 well area. Towards the coast of the Baltic Sea, the porosity increases to more than 5%, while the temperature decreases, but is still relatively high, at about 130 °C. This suggests the application of an enhanced geothermal system or hot dry rocks system as principal methods for using geothermal energy.


Author(s):  
Emmanuel Yeri Kombe ◽  
Joseph Muguthu

The East African Rift is among the most crucial regions of the world endowed with a remarkable geothermal potential. Using current technologies, East African countries have a geothermal power potential of more than 15,000 MWe. Nevertheless, the zone is still at an early stage of geothermal development with few plants producing a few hundred MWe. Among East African countries that have carried out research on geothermal resources, Kenya is leading in utilising geothermal energy resources for electricity generation. Eritrea, Uganda, Tanzania and Djibouti are at exploration stage while Malawi and Rwanda have so far not gone past geothermal resource potential record work. This study sought to address the challenges and barriers to the adoption of geothermal energy as well as the strategies to implement geothermal energy plans in East Africa.


2016 ◽  
Vol 35 ◽  
pp. 23-26 ◽  
Author(s):  
Henrik Vosgerau ◽  
Anders Mathiesen ◽  
Morten Sparre Andersen ◽  
Lars Ole Boldreel ◽  
Morten Leth Hjuler ◽  
...  

The Danish subsurface contains deep geothermal resources which may contribute for hundreds of years to the mixed Danish energy supply (Mathiesen et al. 2009). At present only a limited fraction of these resources are utilised in three existing geothermal power plants in Thisted, Margretheholm and Sønderborg (Fig. 1) where warm formation water is pumped to the surface from a production well and, after heat extraction, returned to the subsurface in injection wells (Fig. 2). Deep geothermal energy has the advantage of being a sustainable and environmentally friendly energy source which is furthermore independent of climate and seasonal variations, in contrast to wind and solar energy. The implementation of deep geothermal energy for district heating replacing conventional energy sources, especially coal and oil, may thus lead to a considerable reduction in the emission of greenhouse gases. There are therefore good reasons to include geothermal energy as a central component in Denmark’s future supply of energy for district heating. Furthermore, heat-demanding industries may consider the possibility to integrate geothermal energy and energy storage in their production process. In order to facilitate the use of geothermal energy, a broad majority in the Danish parliament has granted financial support for initiatives within the geothermal field (Energy policy agreement of March 22, 2012). The present paper deals with one of the outcomes of this agreement, namely a WebGIS portal with an overview of existing and interpreted geological and geophysical data. This will be relevant for all stakeholders in the exploration of deep geothermal resources in the Danish subsurface. The portal focuses on geothermal reservoirs within the 800–3000 m depth interval and provides an overview of the amount and quality of existing geodata, the geological composition of the subsurface, and interpreted thematic products such as geological maps of potential geothermal reservoirs. A comprehensive map from the portal showing onshore and nearoffshore locations where the geological conditions are potentially suitable for extraction of deep geothermal energy in Denmark is shown in Fig. 1. Many of the thematic maps are outcomes of the project The geothermal energy potential in Denmark – reservoir properties, temperature distribution and models for utilization under the programme Sustainable Energy and Environment funded by the Danish Agency for Science, Technology and Innovation.


Sign in / Sign up

Export Citation Format

Share Document