scholarly journals Studies of the Effect of Crosslinking in the Strongly Basic Anion Exchanger Dowex 1 and the HNO3 Concentration Employed on the Separation of the SmIII–NdIII Pair in the Polar Organic Solvent–H2O–HNO3 System

2001 ◽  
Vol 19 (3) ◽  
pp. 219-228
Author(s):  
Z. Hubicki ◽  
M. Olszak

Because of their specific structure, rare earth elements are used for the modification or structural stabilization of many metallic or ceramic materials employed in modern technology and also in the metallic form, i.e. in alloys and compounds with unique properties. Industrial demand for rare earth metals has increased lately due to their new application possibilities, e.g. in supermagnets of the Nd–Fe–B type or in ceramic high-temperature superconductors. Equally, the application of rare earth elements in metallurgy, catalysis, ceramics, etc. remains of significant importance. The separation and purification of rare earth elements(III) which occur in groups with similar physicochemical properties involve extremely difficult and complex processes. Ion exchange is one method which enables such separation. This paper presents the results of studies of the influence of the extent of crosslinking in the anion exchanger Dowex 1 and the concentration of nitric acid on the separation of the SmIII–NdIII pair by frontal analysis in 90% v/v CH3COCH3– or the CH3OH–10% v/v × M HNO3 systems. The most effective results were obtained in the 90% v/v CH3OH–10% v/v 7 M HNO3 system employing the anion exchanger Dowex 1 × 4 allowing 0.11 kg samarium(III) to be purified on 1 dm3 ion exchanger in the nitrate form and leading to a decrease in the micro-component content to a value below 10−3%.

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Wenjie Zhang ◽  
Xian Xie ◽  
Xiong Tong ◽  
Yunpeng Du ◽  
Qiang Song ◽  
...  

Solvent extraction is the most widely used method for separation and purification of rare earth elements, and organic extractants such as di(2-ethylhexyl) phosphoric acid (P204) and di(1-methyl-heptyl) methyl phosphonate (P350) are most commonly used for industrial applications. However, the presence of impurity ions in the feed liquid during extraction can easily emulsify the extractant and affect the quality of rare earth products. Aluminum ion is the most common impurity ion in the feed liquid, and it is an important cause of emulsification of the extractant. In this study, the influence of aluminum ion was investigated on the extraction of light rare earth elements by the P204-P350 system in hydrochloric acid medium. The results show that Al3+ competes with light rare earths in the extraction process, reducing the overall extraction rate. In addition, the Al3+ stripping rate is low and there is continuous accumulation of Al3+ in the organic phase during the stripping process, affecting the extraction efficiency and even causing emulsification. The slope method and infrared detection were utilized to explore the formation of an extraction compound of Al3+ and the extractant P204-P350 that entered the organic phase as AlCl[(HA)2]2P350(o).


2021 ◽  
Vol 11 (13) ◽  
pp. 6056
Author(s):  
Egle Rosson ◽  
Acacio Rincón Rincón Romero ◽  
Denis Badocco ◽  
Federico Zorzi ◽  
Paolo Sgarbossa ◽  
...  

Spent fluorescent lamps (SFL) are classified as hazardous materials in the European Waste Catalogue, which includes residues from various hi-tech devices. The most common end-of-life treatment of SFL consists in the recovery of rare earth elements from the phosphor powders, with associated problems in the management of the glass residues, which are usually landfilled. This study involves the manufacturing of porous ceramics from both the coarse glass-rich fraction and the phosphor-enriched fraction of spent fluorescent lamps. These porous materials, realizing the immobilization of Rare Earth Elements (REEs) within a glass matrix, are suggested for application in buildings as thermal and acoustic insulators. The proposed process is characterized by: (i) alkaline activation (2.5 M or 1 M NaOH aqueous solution); (ii) pre-curing at 75 °C; (iii) the addition of a surfactant (Triton X-100) for foaming at high-speed stirring; (iv) curing at 45 °C; (v) viscous flow sintering at 700 °C. All the final porous ceramics present a limited metal leaching and, in particular, the coarse glass fraction activated with 2.5 M NaOH solution leads to materials comparable to commercial glass foams in terms of mechanical properties.


Author(s):  
Franca Tommasi ◽  
Philippe J. Thomas ◽  
Giovanni Pagano ◽  
Genevieve A. Perono ◽  
Rahime Oral ◽  
...  

Abstract Rare earth elements (REEs) are key constituents of modern technology and play important roles in various chemical and industrial applications. They also are increasingly used in agricultural and zootechnical applications, such as fertilizers and feed additives. Early applications of REEs in agriculture have originated in China over the past several decades with the objective of increasing crop productivity and improving livestock yield (e.g., egg production or piglet growth). Outside China, REE agricultural or zootechnical uses are not currently practiced. A number of peer-reviewed manuscripts have evaluated the adverse and the positive effects of some light REEs (lanthanum and cerium salts) or REE mixtures both in plant growth and in livestock yield. This information was never systematically evaluated from the growing body of scientific literature. The present review was designed to evaluate the available evidence for adverse and/or positive effects of REE exposures in plant and animal biota and the cellular/molecular evidence for the REE-associated effects. The overall information points to shifts from toxic to favorable effects in plant systems at lower REE concentrations (possibly suggesting hormesis). The available evidence for REE use as feed additives may suggest positive outcomes at certain doses but requires further investigations before extending this use for zootechnical purposes.


Author(s):  
Kathryn M. Goodenough ◽  
Eimear A. Deady ◽  
Charles D. Beard ◽  
Sam Broom-Fendley ◽  
Holly A. L. Elliott ◽  
...  

AbstractThe rare earth elements (REE) are critical raw materials for much of modern technology, particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition. Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn- to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralisation in syn- to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralisation in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralisation in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.


1990 ◽  
Vol 37 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Juntaro KOBAYASHI ◽  
Hideaki SETO ◽  
Takao MORI

2015 ◽  
pp. 115-126
Author(s):  
Joon Soo Kim ◽  
Hyun Soo Kim ◽  
Myong Jun Kim ◽  
Jin-Young Lee ◽  
Jyothi Rajesh Kumar

Sign in / Sign up

Export Citation Format

Share Document