Experimental Investigation of Overlap and Blockage Effects on Three-Bucket Savonius Rotors

2007 ◽  
Vol 31 (5) ◽  
pp. 363-368 ◽  
Author(s):  
A. Biswas ◽  
R. Gupta ◽  
K.K. Sharma

Savonius vertical axis wind turbines (VAWT) have advantages over horizontal axis wind turbines (HAWT), such as simple construction, acceptance of wind from any direction without orientation, self-starting, inexpensive etc. These advantages make it a viable proposition for small-scale applications in developing countries. In spite of the above advantages, VAWT are not gaining popularity mainly because of their poor efficiency. Hence, a three-bucket Savonius model rotor, having 8 cm bucket diameter and 20 cm height, was designed, fabricated, and tested in a sub-sonic wind tunnel. Provisions for variations of ‘blade’ overlap were included. Experiments were conducted for overlap conditions in the range of 16% to 35%. From the experimental investigations, power-coefficients (Cp) were calculated with and without blockage correction factors for tunnel interference. In both analyses, the power-coefficient increased if there was overlap, with an optimum value at 20% overlap of 47% without blockage correction, and 38% with blockage correction.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1870 ◽  
Author(s):  
Lidong Zhang ◽  
Kaiqi Zhu ◽  
Junwei Zhong ◽  
Ling Zhang ◽  
Tieliu Jiang ◽  
...  

The central shaft is an important and indispensable part of a small scale urban vertical axis wind turbines (VAWTs). Normally, it is often operated at the same angular velocity as the wind turbine. The shedding vortices released by the rotating shaft have a negative effect on the blades passing the wake of the wind shaft. The objective of this study is to explore the influence of the wake of rotating shaft on the performance of the VAWT under different operational and physical parameters. The results show that when the ratio of the shaft diameter to the wind turbine diameter (α) is 9%, the power loss of the wind turbine in one revolution increases from 0% to 25% relative to that of no-shaft wind turbine (this is a numerical experiment for which the shaft of the VAWT is removed in order to study the interactions between the shaft and blade). When the downstream blades pass through the wake of the shaft, the pressure gradient of the suction side and pressure side is changed, and an adverse effect is also exerted on the lift generation in the blades. In addition, α = 5% is a critical value for the rotating shaft wind turbine (the lift-drag ratio trend of the shaft changes differently). In order to figure out the impacts of four factors; namely, tip speed ratios (TSRs), α, turbulence intensity (TI), and the relative surface roughness value (ks/ds) on the performance of a VAWT system, the Taguchi method is employed in this study. The influence strength order of these factors is featured by TSRs > ks/ds > α > TI. Furthermore, within the range we have analyzed in this study, the optimal power coefficient (Cp) occurred under the condition of TSR = 4, α = 5%, ks/ds = 1 × 10−2, and TI = 8%.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5140
Author(s):  
Altaf Hussain Rajpar ◽  
Imran Ali ◽  
Ahmad E. Eladwi ◽  
Mohamed Bashir Ali Bashir

Developments in the design of wind turbines with augmentation are advancing around the globe with the goal of generating electricity close to the user in built-up areas. This is certain to help lessen the power generation load as well as distribution and transmission network costs by reducing the distance between the user and the power source. The main objectives driving the development and advancement of vertical-axis wind turbines are increasing the power coefficient and the torque coefficient by optimizing the upstream wind striking on the rotor blades. Unlike horizontal-axis wind turbines, vertical axis turbines generate not only positive torque but also negative torque during operation. The negative torque generated by the returning blade is a key issue for vertical-axis wind turbines (VAWTs) that is counterproductive. Installation of wind deflectors for flow augmentation helps to reduce the negative torque generated by the returning blades as well as enhance the positive torque by creating a diversion in the upstream wind towards the forwarding blade during operation. This paper reviews various designs, experiments, and CFD simulations of wind deflectors reported to date. Optimization techniques for VAWTs incorporating wind deflectors are discussed in detail. The main focus of the review was on the installation position and orientation of the deflectors and their potential contribution to increasing the power coefficient. Topics for future study are suggested in the conclusion section of the paper.


Author(s):  
Jim Shih-Jiun Chen ◽  
Zhi Chen ◽  
Saroj Biswas ◽  
Jiun-Jih Miau ◽  
Cheng-Han Hsieh

Vertical axis wind turbines (VAWT) have been valued in recent years for their low manufacturing cost, structural simplicity and convenience of applications in urban settings. Despite their advantages, VAWTs have several drawbacks including low power coefficient, poor self-starting ability, negative torque and the associated cyclic stress at certain azimuth angles. Using pitch control ideas, our research is aimed at solving the above problems. In this study, a small-scale Giromill VAWT using three NACA-0015 airfoils with a cord length of 0.09 m and a wind turbine radius of 0.6 m is investigated. During each rotation, the angle of attack depends on the wind velocity, angular velocity and current azimuth angle for each turbine blade. Negative torques at certain angles are attributed to the inherent unsteady aerodynamic behavior at high angles of attack. Without optimal pitch control, the Double-Multiple Streamtube (DMS) model predicts negative torques at certain azimuth angles and very low power coefficients for tip speed ratios below 2.5. The unfavorable negative torques are eliminated using an optimal pitch control strategy, which maximizes the tangential force coefficients and thus the torque coefficients by iterations of all possible relative angles of attack for various tip speed ratios. As a result, the power coefficient is significantly improved especially at low tip speed ratios in the range of zero to three (λ = 0 – 3). Blade pitch control can also solve the self-starting problem and reduce the vibration of vertical axis wind turbines.


Author(s):  
Sukanta Roy ◽  
Ujjwal K. Saha

With the rapid growth of renewable energy sector, vertical axis wind turbines are finding their applications in the small-scale distributed wind energy system, particularly in rural areas. These turbines are simple in construction and easy to install with comparatively lower cost. However, the efficiency of these turbines is not competitive to that of horizontal axis wind turbines. In this paper, an attempt has been made to improve the efficiency of a Savonius-style vertical axis wind turbine under concentrated and oriented jets through installation of deflectors at different positions ahead of the turbine. The aim is to make the major portion of the flow to be incident on the concave part of the blades. Experiments are conducted in a low speed wind tunnel with an open test section facility. For all the experiments, the wind speed in the tunnel is kept constant at 6.2 m/s. The mechanical loads are varied to analyze the performance of the turbine at various tip speed ratios. In each case, both power and torque coefficients are calculated in order to estimate the performance indices of the turbine. Moreover, a suitable operating range of this turbine is specified. The present investigation demonstrates that with the installation of deflectors, the performance of the Savonius-style wind turbines can be sufficiently improved under concentrated and oriented jets. The peak power coefficient of 0.32 is achieved with an optimized position of the deflectors in front of both the advancing and returning blades.


Author(s):  
Xiaomin Chen ◽  
Ramesh Agarwal

In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal–Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally place the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.


2021 ◽  
pp. 0309524X2110618
Author(s):  
Syed Abdur Rahman Tahir ◽  
Muhammad Shakeel Virk

Vertical Axis Wind Turbine (VAWT) can be a promising solution for electricity production in remote ice prone territories of high north, where good wind resources are available, but icing is a challenge that can affect its optimum operation. A lot of research has been made to study the icing effects on the conventional horizontal axis wind turbines, but the literature about vertical axis wind turbines operating in icing conditions is still scarce, despite the importance of this topic. This paper presents a review study about existing knowledge of VAWT operation in icing condition. Focus has been made in better understanding of ice accretion physics along VAWT blades and methods to detect and mitigate icing effects.


2018 ◽  
Vol 8 (11) ◽  
pp. 2266 ◽  
Author(s):  
Shoutu Li ◽  
Ye Li ◽  
Congxin Yang ◽  
Xuyao Zhang ◽  
Qing Wang ◽  
...  

The airfoil plays an important role in improving the performance of wind turbines. However, there is less research dedicated to the airfoils for Vertical Axis Wind Turbines (VAWTs) compared to the research on Horizontal Axis Wind Turbines (HAWTs). With the objective of maximizing the aerodynamic performance of the airfoil by optimizing its geometrical parameters and by considering the law of motion of VAWTs, a new airfoil, designated the LUT airfoil (Lanzhou University of Technology), was designed for lift-driven VAWTs by employing the sequential quadratic programming optimization method. Afterwards, the pressure on the surface of the airfoil and the flow velocity were measured in steady conditions by employing wind tunnel experiments and particle image velocimetry technology. Then, the distribution of the pressure coefficient and aerodynamic loads were analyzed for the LUT airfoil under free transition. The results show that the LUT airfoil has a moderate thickness (20.77%) and moderate camber (1.11%). Moreover, compared to the airfoils commonly used for VAWTs, the LUT airfoil, with a wide drag bucket and gentle stall performance, achieves a higher maximum lift coefficient and lift–drag ratios at the Reynolds numbers 3 × 105 and 5 × 105.


2015 ◽  
Vol 785 ◽  
pp. 310-314 ◽  
Author(s):  
Norzanah Rosmin ◽  
N.A. Rahman ◽  
A.H. Mustaamal

Vertical-Axis Wind Turbines (VAWTs) are known as the most suitable wind turbine for small-scale electrical generation. There are many types of VAWTs and each of it has different performances and efficiency. In this work, three types of VAWT systems (Savo-B2, Savo-B4 and Giro-B3) were designed, constructed and tested to investigate the amount of electrical power that could be generated under several constant wind speeds. The blade rotors were designed and built using 2 mm thickness of aluminum plate. The tip speed ratios, power coefficients, blade rotations for each blade rotor and the simplicity of the proposed designs were studied via an experimental setup. The experimental work demonstrates that Savo-B2 provides the highest power coefficient which is up to 0.32. Meanwhile, Giro-B3 offers the fastest rotational blade speed, up to 20.53 rad/s, among the three designs.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Sign in / Sign up

Export Citation Format

Share Document