Life cycle economic analysis of stand-alone solar pv system in India – a relative study

2015 ◽  
Vol 12 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Soumya Das ◽  
Pradip K Sadhu ◽  
Suprava Chakraborty ◽  
Malayendu Saha ◽  
Moumita Sadhu

In this paper, life cycle economic analysis (LCEA) of stand-alone solar photovoltaic (PV) modules is performed. It is tested for their commercial prospects in remote regions of India, which do not have a direct access of grid supply. Availability of grid supply depends on the population density. Solar PV technology is one of the first among several renewable energy technologies that have been adopted worldwide for meeting the basic needs of generation of electricity particularly in remote areas. Overall lifetime expenditures related to the power projects are analyzed and compared with the help of net present worth (NPW) theory. In the context of a developing country like India, it is found that the cost effectiveness of conventional or ‘green’ power driven sources depends on kW rating of generators and daily demand of consumers. The demand coverage, which would determine the commercial viability of renewable and non-renewable sources is calculated considering the practical power rating of generators available in the local market. This study is intended to assist planning of financial matters with regard to installing small to medium scale electric power generation using solar PV module in remote areas of India.

This paper describes an economic analysis of 80kW solar PV system connected to Grid. PV system solar energy is an important source to produce electricity now-a-days. 80kW solar PV system is designed by using MATLAB/Simulink Software and analysed the performance evaluation of this system with respect to MATLAB readings of 80kw system designed for on-grid and off-grid using HOMER software to compare the economic analysis of both systems. Compare these on-grid and off-grid systems using homer pro software to calculate the cost of energy (COE) and net present cost (NPC).These Results will help in an optimization techniques and further investigations in solar PV system.


Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


The techno-economic analysis of a PV system is designed to measure the viability of the designed system from an economical and technological point of view assuming some specific environmental conditions. In this research, for the techno-economic analysis of PV system the authors are focused on four general categories of factors which are highly influential on the investment decision in this field. These are the PV system costs, the electricity cost, the sunlight and other environmental characteristics and the financial incentives. Each of this factors is analyzed in order to understand and evaluate the general conditions that influence the decision in the photovoltaic business. The methodology that is used for explaining the real business environment in PV field and the main indicators that can estimate the investment profitability is the case study related to formal opportunities for developing PV investment projects in Romania. The investors in PV field have to understand the life cycle of a PV system that can give an overlook of the cost reduction opportunities and also make them sensible to the decommissioning phase of such an investment. For future investments in the PV field in Europe the authors identified and analyzed the main factors that characterize the PV business development in the next period.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sung-Min Choi ◽  
Yeon-Sil Lee

Currently, repair and maintenance cycles that follow the completion of construction facilities lead to the necessitation of subsequent data on the analysis of study and plan for maintenance. As such, an index of evaluation was drafted and a plan of maintenance cycle was computed using the investigation data derived from surveying target housing units in permanent rental environmental conditions, with a minimum age of 20 years, and their maintenance history. Optimal maintenance and replacement methods were proposed based on this data. Economic analysis was conducted through the Risk-Weighted Life Cycle Cost (RWLCC) method in order to determine the cost analysis of maintenance life cycle methods used for repair. Current maintenance cycle methods that have been used for 20 years were also compared with alternative maintenance cycles.


Author(s):  
Siti Amely Jumaat ◽  
Adhwa Amsyar Syazwan Ab Majid ◽  
Chin Kim Gan ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
...  

This project aims to determine the potential of grid connected solar Photovoltaic (PV) implementation and project planning of solar PV System in school.  Generally, the educational institution used huge amount of electricity to operate so their monthly bills is expensive. Therefore, the project planning is necessary to determine the potential of solar PV system implementation. The project planning consists of the current electricity consumed by the school and the amount of 120W Monocrystalline PV module needed by them. The cost of project are determines to identify the initial cost of this project implementation. Lastly, analysis on the profit collected by SK Pintas Raya after 20 years of solar PV system implementation proved the importance of this project.


2021 ◽  
Vol 25 (109) ◽  
pp. 139-147
Author(s):  
Marco Seguel Sandoval ◽  
Luis Améstica Rivas ◽  
Rudi Radrigan Ewoldt

El objetivo de este trabajo es evaluar un proyecto fotovoltaico como fuente de energía alternativa en el sector de salud primaria como estudio de caso, desde la perspectiva económica y social. La evaluación se basó en variables técnicas y económicas bajo los criterios de Valor Actual Neto (VAN) y Tasa interna de retorno (TIR), valorizando las reducciones de carbono (CO2) y utilizando la tasa de descuento social del Ministerio de Desarrollo Social. Los resultados son favorables y sugieren la ejecución de este proyecto como iniciativa de política pública. Sin embargo, queda en evidencia que en periodos de invierno no se cubre las necesidades energéticas, haciendo imprescindible diversificar la matriz con fuentes tradicionales. Palabras Clave: Energía solar fotovoltaica, sector salud, sustentabilidad, evaluación social. Referencias [1]Fondo Nacional de Salud (FONASA), Boletin Estadístico 2016-2017. Disponible: https://www.fonasa.cl/sites/fonasa/adjuntos/Boletin_Estadistico_2016_2017_2018. [2]Cisterna L, Améstica-Rivas L, Piderit M. Proyectos fotovoltaicos en generación distribuida ¿Rentabilidad privada o sustentabilidad ambiental?. Revista Politécnica. 2020; 45(2): en prensa. Disponible: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/issue/view/39. [3]Medina J. La dieta de dióxido de carbono CO2. Conciencia Tecnológica. 2010; 39: 50-53. Disponible: https://www.redalyc.org/articulo.oa?id=94415753009. [4]Mardones C. Muñoz, T. Impuesto al CO2 en el sector eléctrico chileno: efectividad y efectos macroeconómicos. Economía Chilena. 2017; 20(1): 4-25. Disponible: https://www.bcentral.cl/web/guest/articulos-publicados. [5]Ministerio del Medio Ambiente, Tercer Informe de Actualización Bienal de Chile, 2018. Disponible: https://mma.gob.cl/wp-content/uploads/2019/07/2018_NIR_CL.pdf. [6]Gallego Y, Arias R, Casas L, Sosa R. Análisis de la implementación de un parque fotovoltaico en la Universidad Central de las Villas. Ingeniería Energética, 2018; 39(2): 82-90. Disponible: http://rie.cujae.edu.cu/index.php/RIE/article/view/531. [7]Arias R, Pérez I. Nueva metodología para determinar los parámetros de un módulo fotovoltaico. Ingeniería Energética. 2018; 39(1): 38-47. Disponible: http://rie.cujae.edu.cu/index.php/RIE/article/view/557. [8]Plá J, Bolzi C, Durán J.C. Energía Solar Fotovoltaica. Generación Distribuida conectada a la red. Ciencia e Investigación. 2018; 68(1), 51-64. Disponible: http://aargentinapciencias.org/wp-content/uploads/2018/03/tomo68-1/4-Duran-cei68-1-5.pdf. [9]Hou G, Sun H, Jiang Z, Pan Z, Wang Y, Zhang X, Zhao Y, Yao Q. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China. Applied Energy. 2016; 164 (15): 882-890. Disponible: https://doi.org/10.1016/j.apenergy.2015.11.023. [10]Baharwani V, Meena N, Dubey A, Brighu U, Mathur J. Life Cycle Analysis of Solar PV System: A Review. International Journal of Environmental Research and Development. 2014; 4(2): 183-190. Disponible: https://www.ripublication.com/ijerd_spl/ijerdv4n2spl_14.pdf [11]Rojas-Hernández I, Lizana F. Tiempo de recuperación de la energía para sistemas fotovoltaicos basados en silicio cristalino en Costa Rica. Ingeniería Energética. 2018; 39 (3):195-202. Disponible: http://rie.cujae.edu.cu/index.php/RIE/article/view/544. [12]World Economic Forum. Informe Energía. 2017. Disponible: https://es.weforum.org/agenda. [13]Zou L, Wang L, Lin A, Zhu H., Peng Y, Zhao Z. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. Journal of Atmospheric and Solar-Terrestrial Physics. 2016; 146: 110-122 Disponible: https://doi.org/10.1016/j.jastp.2016.05.013. [14]Crawley D, Lawrie, L, Winkelmann F, Buhl W, Huang C, Pedersend C, Strand R, Liesen R, Fisher D, Witte M, Glazer J. EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings. 2001; 33(4): 319-331.Disponible: https://doi.org/10.1016/S0378-7788(00)00114-6. [15]Larrain S, Stevens C, Paz M. Las fuentes renovables de energía y el uso eficiente. 2002. LOM Ediciones, Chile Disponible: http://www.archivochile.com/Chile_actual/patag_sin_repre/03/chact_hidroay-3%2000010.pdf. [16]World Economic Forum. Cuatro países que lideran las tendencias de energía solar en América Latina y el Caribe, 2017.Disponible: https://es.weforum.org/agenda/2017/05/cuatro-paises-que-lideran-las-tendencias-de-energia-solar-en-america-latina-y-el-caribe/. [17]Ministerio de Energía. Ley 20.571, Regula el pago de las tarifas eléctricas de las generadoras residenciales. 2012. Disponible: https://www.leychile.cl/Navegar?idNorma=1038211. [18]Comisón Nacional de Energía (CNE) de Chile. Reporte mensual sector energético. 2019; 50. Disponible: https://www.cne.cl. [19]Ministerio de Energía, Programa de Techos Solares Públicos, Reporte de costos. 2018. Disponible: http://www.minenergia.cl/techossolares/wp-content/uploads/2017/04/Reporte-de-Costos-de-Adjudicacion-2018-233x300.jpg. [20]Löhr W, Gauer K, Serrano N, Zamorano A. Igarss 2014. Eficiencia Energética en Hospitales Públicos. Editorial GTZ- Dalkia. Santiago de Chile. [21]Smith M, De Titto E. Hospitales sostenibles frente al cambio climático: huella de carbono de un hospital público de la ciudad de Buenos Aires. Revista Argentina Salud Pública. 2018; 9(36): 7-13. Disponible: http://rasp.msal.gov.ar/rasp/articulos/volumen36/7-13.pdf. [22]Chung J, Meltzer, D. Estimate of the carbon footprint of the US health care sector. Jama. 2009; 302(18):1970-1972. Disponible: https://jamanetwork.com/journals/jama/article-abstract/184856. [23]Nope A, García R, Bobadilla A. Método para la implementación de sistemas solares activos en establecimientos hospitalarios, estudio de caso en el hospital clínico del sur, Concepción, Chile. En Proceedings of the 3rd International Congress on Sustainable Construction and Eco-Efficient Solutions. Sevilla. 2017; 451-464. Disponible: https://idus.us.es/xmlui/handle/11441/58969. [24]Compañía General de Electricidad, Tarifa de Suministro. 2018 Disponible: http://www.cge.cl/wp-content/uploads/2019/08/Publicacion-CGE-2019-08-01-Suministro-electrico.pdf. [25]Ministerio de Desarrollo Social, Precio Social del Carbono. 2018. Disponible: http://sni.ministeriodesarrollosocial.gob.cl/download/precio-social-co2-2017/?wpdmdl=2406.


Sign in / Sign up

Export Citation Format

Share Document