scholarly journals Una apuesta sustentable en los centros de salud primaria: Una evaluación económica y social

2021 ◽  
Vol 25 (109) ◽  
pp. 139-147
Author(s):  
Marco Seguel Sandoval ◽  
Luis Améstica Rivas ◽  
Rudi Radrigan Ewoldt

El objetivo de este trabajo es evaluar un proyecto fotovoltaico como fuente de energía alternativa en el sector de salud primaria como estudio de caso, desde la perspectiva económica y social. La evaluación se basó en variables técnicas y económicas bajo los criterios de Valor Actual Neto (VAN) y Tasa interna de retorno (TIR), valorizando las reducciones de carbono (CO2) y utilizando la tasa de descuento social del Ministerio de Desarrollo Social. Los resultados son favorables y sugieren la ejecución de este proyecto como iniciativa de política pública. Sin embargo, queda en evidencia que en periodos de invierno no se cubre las necesidades energéticas, haciendo imprescindible diversificar la matriz con fuentes tradicionales. Palabras Clave: Energía solar fotovoltaica, sector salud, sustentabilidad, evaluación social. Referencias [1]Fondo Nacional de Salud (FONASA), Boletin Estadístico 2016-2017. Disponible: https://www.fonasa.cl/sites/fonasa/adjuntos/Boletin_Estadistico_2016_2017_2018. [2]Cisterna L, Améstica-Rivas L, Piderit M. Proyectos fotovoltaicos en generación distribuida ¿Rentabilidad privada o sustentabilidad ambiental?. Revista Politécnica. 2020; 45(2): en prensa. Disponible: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/issue/view/39. [3]Medina J. La dieta de dióxido de carbono CO2. Conciencia Tecnológica. 2010; 39: 50-53. Disponible: https://www.redalyc.org/articulo.oa?id=94415753009. [4]Mardones C. Muñoz, T. Impuesto al CO2 en el sector eléctrico chileno: efectividad y efectos macroeconómicos. Economía Chilena. 2017; 20(1): 4-25. Disponible: https://www.bcentral.cl/web/guest/articulos-publicados. [5]Ministerio del Medio Ambiente, Tercer Informe de Actualización Bienal de Chile, 2018. Disponible: https://mma.gob.cl/wp-content/uploads/2019/07/2018_NIR_CL.pdf. [6]Gallego Y, Arias R, Casas L, Sosa R. Análisis de la implementación de un parque fotovoltaico en la Universidad Central de las Villas. Ingeniería Energética, 2018; 39(2): 82-90. Disponible: http://rie.cujae.edu.cu/index.php/RIE/article/view/531. [7]Arias R, Pérez I. Nueva metodología para determinar los parámetros de un módulo fotovoltaico. Ingeniería Energética. 2018; 39(1): 38-47. Disponible: http://rie.cujae.edu.cu/index.php/RIE/article/view/557. [8]Plá J, Bolzi C, Durán J.C. Energía Solar Fotovoltaica. Generación Distribuida conectada a la red. Ciencia e Investigación. 2018; 68(1), 51-64. Disponible: http://aargentinapciencias.org/wp-content/uploads/2018/03/tomo68-1/4-Duran-cei68-1-5.pdf. [9]Hou G, Sun H, Jiang Z, Pan Z, Wang Y, Zhang X, Zhao Y, Yao Q. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China. Applied Energy. 2016; 164 (15): 882-890. Disponible: https://doi.org/10.1016/j.apenergy.2015.11.023. [10]Baharwani V, Meena N, Dubey A, Brighu U, Mathur J. Life Cycle Analysis of Solar PV System: A Review. International Journal of Environmental Research and Development. 2014; 4(2): 183-190. Disponible: https://www.ripublication.com/ijerd_spl/ijerdv4n2spl_14.pdf [11]Rojas-Hernández I, Lizana F. Tiempo de recuperación de la energía para sistemas fotovoltaicos basados en silicio cristalino en Costa Rica. Ingeniería Energética. 2018; 39 (3):195-202. Disponible: http://rie.cujae.edu.cu/index.php/RIE/article/view/544. [12]World Economic Forum. Informe Energía. 2017. Disponible: https://es.weforum.org/agenda. [13]Zou L, Wang L, Lin A, Zhu H., Peng Y, Zhao Z. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China. Journal of Atmospheric and Solar-Terrestrial Physics. 2016; 146: 110-122 Disponible: https://doi.org/10.1016/j.jastp.2016.05.013. [14]Crawley D, Lawrie, L, Winkelmann F, Buhl W, Huang C, Pedersend C, Strand R, Liesen R, Fisher D, Witte M, Glazer J. EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings. 2001; 33(4): 319-331.Disponible: https://doi.org/10.1016/S0378-7788(00)00114-6. [15]Larrain S, Stevens C, Paz M. Las fuentes renovables de energía y el uso eficiente. 2002. LOM Ediciones, Chile Disponible: http://www.archivochile.com/Chile_actual/patag_sin_repre/03/chact_hidroay-3%2000010.pdf. [16]World Economic Forum. Cuatro países que lideran las tendencias de energía solar en América Latina y el Caribe, 2017.Disponible: https://es.weforum.org/agenda/2017/05/cuatro-paises-que-lideran-las-tendencias-de-energia-solar-en-america-latina-y-el-caribe/. [17]Ministerio de Energía. Ley 20.571, Regula el pago de las tarifas eléctricas de las generadoras residenciales. 2012. Disponible: https://www.leychile.cl/Navegar?idNorma=1038211. [18]Comisón Nacional de Energía (CNE) de Chile. Reporte mensual sector energético. 2019; 50. Disponible: https://www.cne.cl. [19]Ministerio de Energía, Programa de Techos Solares Públicos, Reporte de costos. 2018. Disponible: http://www.minenergia.cl/techossolares/wp-content/uploads/2017/04/Reporte-de-Costos-de-Adjudicacion-2018-233x300.jpg. [20]Löhr W, Gauer K, Serrano N, Zamorano A. Igarss 2014. Eficiencia Energética en Hospitales Públicos. Editorial GTZ- Dalkia. Santiago de Chile. [21]Smith M, De Titto E. Hospitales sostenibles frente al cambio climático: huella de carbono de un hospital público de la ciudad de Buenos Aires. Revista Argentina Salud Pública. 2018; 9(36): 7-13. Disponible: http://rasp.msal.gov.ar/rasp/articulos/volumen36/7-13.pdf. [22]Chung J, Meltzer, D. Estimate of the carbon footprint of the US health care sector. Jama. 2009; 302(18):1970-1972. Disponible: https://jamanetwork.com/journals/jama/article-abstract/184856. [23]Nope A, García R, Bobadilla A. Método para la implementación de sistemas solares activos en establecimientos hospitalarios, estudio de caso en el hospital clínico del sur, Concepción, Chile. En Proceedings of the 3rd International Congress on Sustainable Construction and Eco-Efficient Solutions. Sevilla. 2017; 451-464. Disponible: https://idus.us.es/xmlui/handle/11441/58969. [24]Compañía General de Electricidad, Tarifa de Suministro. 2018 Disponible: http://www.cge.cl/wp-content/uploads/2019/08/Publicacion-CGE-2019-08-01-Suministro-electrico.pdf. [25]Ministerio de Desarrollo Social, Precio Social del Carbono. 2018. Disponible: http://sni.ministeriodesarrollosocial.gob.cl/download/precio-social-co2-2017/?wpdmdl=2406.

2021 ◽  
Vol 29 (1) ◽  
pp. 15-40
Author(s):  
María Guadalupe Arredondo-Hidalgo ◽  
Diana del Consuelo Caldera González

El estudio de caso de la empresa investigada busca comprender la responsabilidad social empresarial (RSE), analizando su cadena de valor desde el Modelo de las 31 prácticas de las cadenas de suministro que el World Economic Forum (2015) propone, desde la perspectiva de la triple ventaja: rentabilidad, medio ambiente y desarrollo de las economías locales. Es una investigación de tipo cualitativa con enfoque de estudio de caso descriptivo. El objetivo del trabajo es observar el impacto de las operaciones de logística internacional en una pyme exportadora mexicana, y analizar si su trascendencia económica ha tenido un desarrollo sustentable en lo social, económico y ambiental. Los resultados indican una ventaja competitiva en la diferenciación del producto a partir del concepto de valor compartido de Porter y Kramer (2002). De acuerdo con el Modelo del WEF, el arquetipo es Liberal humanista, puesto que enfatiza el valor del negocio en 65% y pondera aspectos socio ambientales en un 35 %. No obstante, los impactos en la cadena de suministro deberán mitigarse si se espera que se identifique a la organización como una empresa socialmente responsable.


2017 ◽  
pp. 4-5
Author(s):  
Marcela Perticara ◽  
Mauricio Tejada

América Latina es una de las regiones en el mundo con menores tasas de participación laboral femenina. Las mujeres no sólo están sub-representadas en el mercado laboral, sino que también reciben salarios (en promedio) por debajo de los de los hombres. De acuerdo al Global Gender Gap Report 2014 publicado por el World Economic Forum (GGGR), la región ha logrado reducir - en la mayoría de los países -de manera importante las brechas por género en salud, educación y empoderamiento político, pero las diferencias de género en el mercado laboral son aún grandes y persistentes en el tiempo. Continuar leyendo...


2019 ◽  
Vol 11 (20) ◽  
pp. 5786 ◽  
Author(s):  
Heng Shue Teah ◽  
Qinyu Yang ◽  
Motoharu Onuki ◽  
Heng Yi Teah

We demonstrated that a green campus initiative can reduce the carbon footprint of a university and improve the disaster resilience of the local community. A project sustainability assessment framework was structured to support the initiative. First, an on-campus solar photovoltaic (PV) system was designed. The project performance in terms of financial cost and greenhouse gas (GHG) emissions was assessed using life cycle cost analysis (LCC) and a life cycle assessment (LCA), respectively. Then, we explored the incorporation of positive social impacts on the local community in the context of natural disaster-prone Japan. Indicators for improving the disaster resilience of the residents were defined based on the Sendai Framework. Our results showed that the proposed solar PV system could provide an electricity self-sufficiency rate of 31% for the campus. Greenhouse gas emissions of 0.0811 kg CO2-eq/kWh would decrease the annual emissions from campus electricity use by 27%. Considering the substituted daytime electricity purchase, a payback period of 12.9 years was achievable. This solar PV system could serve as an emergency power source to 4666–8454 nearby residents and 8532 smart city residents. This external effect would encourage stakeholders like local government and developers to participate in the project.


2017 ◽  
Vol 10 (17) ◽  
pp. 177-192
Author(s):  
Sandra Milena Zambrano Vargas

La realización del presente estudio incluye la revisión teórica del tema de competitividad desde su concepto definido por varios autores, luego se estudia desde las entidades internacionales expertas en su medición como es el caso del World Economic Forum (2009), el Índice de Competitividad del Institute for Management Development (IMD) de Suiza, y el Índice de Facilidad para Hacer Negocios (Doing Business) del Banco Mundial (DB). Además se tienen en cuenta lineamientos diseñados por el CONPES que determinan planes de acción para el incremento de la competitividad de Colombia, y por último se hace una revisión de la competitividad en el departamento de Boyacá. Con esta información se aplica el cuestionario utilizado por el Foro Económico Mundial que se basa en doce pilares para analizar la competitividad de las naciones. Su validación y aplicación se realiza a una muestra de empresas manufactureras y de servicios del municipio de Sogamoso para conocer su competitividad actual y plantear estrategias de mejoramiento futuras.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2346 ◽  
Author(s):  
M. Mahmud ◽  
Nazmul Huda ◽  
Shahjadi Farjana ◽  
Candace Lang

The demand for clean energy is strong, and the shift from fossil-fuel-based energy to environmentally friendly sources is the next step to eradicating the world’s greenhouse gas (GHG) emissions. Solar energy technology has been touted as one of the most promising sources for low-carbon, non-fossil fuel energy production. However, the true potential of solar-based technologies is established by augmenting efficiency through satisfactory environmental performance in relation to other renewable energy systems. This paper presents an environmental life-cycle assessment (LCA) of a solar-photovoltaic (PV) system and a solar-thermal system. Single crystalline Si solar cells are considered for the solar PV system and an evacuated glass tube collector is considered for the solar thermal system in this analysis. A life-cycle inventory (LCI) is developed considering all inputs and outputs to assess and compare the environmental impacts of both systems for 16 impact indicators. LCA has been performed by the International Reference Life Cycle Data System (ILCD), Impact 2002+, Cumulative Energy Demand (CED), Eco-points 97, Eco-indicator 99 and Intergovernmental Panel on Climate Change (IPCC) methods, using SimaPro software. The outcomes reveal that a solar-thermal framework provides more than four times release to air ( 100 % ) than the solar-PV ( 23 . 26 % ), and the outputs by a solar-PV system to soil ( 27 . 48 % ) and solid waste ( 35 . 15 % ) are about one third that of solar-thermal. The findings also depict that the solar panels are responsible for the most impact in the considered systems. Moreover, uncertainty and sensitivity analysis has also been carried out for both frameworks, which reveal that Li-ion batteries and copper-indium-selenium (CIS)-solar collectors perform better than others for most of the considered impact categories. This study revealed that a superior environmental performance can be achieved by both systems through careful selection of the components, taking into account the toxicity aspects, and by minimizing the impacts related to the solar panel, battery and heat storage.


2015 ◽  
Vol 12 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Soumya Das ◽  
Pradip K Sadhu ◽  
Suprava Chakraborty ◽  
Malayendu Saha ◽  
Moumita Sadhu

In this paper, life cycle economic analysis (LCEA) of stand-alone solar photovoltaic (PV) modules is performed. It is tested for their commercial prospects in remote regions of India, which do not have a direct access of grid supply. Availability of grid supply depends on the population density. Solar PV technology is one of the first among several renewable energy technologies that have been adopted worldwide for meeting the basic needs of generation of electricity particularly in remote areas. Overall lifetime expenditures related to the power projects are analyzed and compared with the help of net present worth (NPW) theory. In the context of a developing country like India, it is found that the cost effectiveness of conventional or ‘green’ power driven sources depends on kW rating of generators and daily demand of consumers. The demand coverage, which would determine the commercial viability of renewable and non-renewable sources is calculated considering the practical power rating of generators available in the local market. This study is intended to assist planning of financial matters with regard to installing small to medium scale electric power generation using solar PV module in remote areas of India.


2019 ◽  
Vol 8 (2) ◽  
pp. 113 ◽  
Author(s):  
Md. Mustafizur Rahman ◽  
Chowdhury Sadid Alam ◽  
TM Abir Ahsan

Life cycle assessment (LCA) is an extremely useful tool to assess the environmental impacts of a solar photovoltaic system throughout its entire life. This tool can help in making sustainable decisions. A solar PV system does not have any operational emissions as it is free from fossil fuel use during its operation. However, considerable amount of energy is used to manufacture and transport the components (e.g. PV panels, batteries, charge regulator, inverter, supporting structure, etc.) of the PV system. This study aims to perform a comprehensive and independent life cycle assessment of a 3.6 kWp solar photovoltaic system in Bangladesh. The primary energy consumption, resulting greenhouse gas (GHG) emissions (CH4, N2O, and CO2), and energy payback time (EPBT) were evaluated over the entire life cycle of the photovoltaic system. The batteries and the PV modules are the most GHG intensive components of the system. About 31.90% of the total energy is consumed to manufacture the poly-crystalline PV modules. The total life cycle energy use and resulting GHG emissions were found to be 76.27 MWhth and 0.17 kg-CO2eq/kWh, respectively. This study suggests that 5.34 years will be required to generate the equivalent amount of energy which is consumed over the entire life of the PV system considered. A sensitivity analysis was also carried out to see the impact of various input parameters on the life cycle result. The other popular electricity generation systems such as gas generator, diesel generator, wind, and Bangladeshi grid were compared with the PV system. The result shows that electricity generation by solar PV system is much more environmentally friendly than the fossil fuel-based electricity generation. ©2019. CBIORE-IJRED. All rights reserved


2019 ◽  
Vol 122 ◽  
pp. 02005
Author(s):  
Anushka Pal ◽  
Jeff Kilby

The paper presents research that investigated the Life Cycle Assessment of multi-crystalline photovoltaic (PV) panels, by considering environmental impacts of the entire life cycle for any solar PVsystems. The overall manufacturing process of a solar PV panel ranging from silica extraction, crystalline silicon ingot growth, wavering to module fabrication and packing of the solar PV panel. The results from this research showed that the module assembly and cell processing of the manufacturing process contributed towards the main environmental impacts of the life cycle of solar PV systems.


2020 ◽  
Vol 12 (3) ◽  
pp. 1075 ◽  
Author(s):  
Pramod Rajput ◽  
Maria Malvoni ◽  
Nallapaneni Manoj Kumar ◽  
O. S. Sastry ◽  
Arunkumar Jayakumar

Life cycle metrics evolution specific to the climate zone of photovoltaic (PV) operation would give detailed insights on the environmental and economic performance. At present, vast literature is available on the PV life cycle metrics where only the output energies ignoring the degradation rate (DR) influence. In this study, the environ-economic analysis of three PV technologies, namely, multi-crystalline silicon (mc-Si), amorphous silicon (a-Si) and hetero-junction with an intrinsic thin layer (HIT) have been carried out in identical environmental conditions. The energy performance parameters and the DR rate of three PV technologies are evaluated based on the monitored real time data from the installation site in hot semi-arid climates. The assessment demonstrates that the HIT PV module technology exhibits more suitable results compared to mc-Si and a-Si PV systems in hot semi-arid climatic conditions of India. Moreover, energy metrices which includes energy payback time (EPBT), energy production factor (EPF) and life cycle conversion efficiency (LCCE) of the HIT technologies are found to be 1.0, 24.93 and 0.15 years, respectively. HIT PV system has higher potential to mitigate the CO2 and carbon credit earned compared to mc-Si and a-Si PV system under hot semi-arid climate. However, the annualized uniform cost (UAC) for mc-Si (3.60 Rs/kWh) and a-Si (3.40 Rs/kWh) are more admissible in relation to the HIT (6.63 Rs/kWh) PV module type. We conclude that the approach of considering DR influenced life cycle metrics over the traditional approach can support to identify suitable locations for specific PV technology.


Sign in / Sign up

Export Citation Format

Share Document