scholarly journals Withdrawal of Ovarian Steroids Stimulates Prostaglandin F2α Production Through Nuclear Factor-κB Activation via Oxygen Radicals in Human Endometrial Stromal Cells: Potential Relevance to Menstruation

2004 ◽  
Vol 50 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Norihiro SUGINO ◽  
Ayako KARUBE-HARADA ◽  
Toshiaki TAKETANI ◽  
Aki SAKATA ◽  
Yasuhiko NAKAMURA
Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5888-5896 ◽  
Author(s):  
Shee-Uan Chen ◽  
Hsinyu Lee ◽  
Daw-Yuan Chang ◽  
Chia-Hung Chou ◽  
Chih-Yuan Chang ◽  
...  

Lysophosphatidic acid (LPA) is a pleiotropic phospholipid molecule involved in inflammation, angiogenesis, would healing, and cancer invasion. Whereas serum lysophospholipase D activity increases in women with pregnancy, the role of LPA in pregnancy remains unclear. We investigated the expression of LPA receptors and function of LPA in endometrial stromal cells. Histologically normal endometrium was obtained from surgical specimens of women undergoing hysterectomy for leiomyoma. First-trimester decidua was obtained from women receiving elective termination of pregnancy. We examined the expressions of LPA1, LPA2, and LPA3 receptors in endometrial stromal cells. The effects of LPA on the expression of vascular endothelial growth factor, IL-6, and IL-8 were examined. Signal pathways of LPA were delineated. Functions of secretory angiogenic factors were tested using human endometrial microvascular endothelial cells. Immunoreactivity and mRNA of LPA1 receptors were identified in endometrial stromal cells. LPA enhanced IL-8 expression in a dose- and time-dependent manner, whereas vascular endothelial growth factor or IL-6 expression was not affected by LPA treatment. Mechanistic dissection disclosed that LPA functioned via the Gi protein, MAPK/p38 and nuclear factor-κB pathway. LPA-induced IL-8 enhanced migration, permeability, capillary tube formation, and proliferation of human endometrial microvascular endothelial cells. Endometrial stromal cells express LPA1 receptors. Through the LPA1 receptor, LPA induces IL-8 expression via a nuclear factor-κB-dependent signal pathway. These results could suggest that LPA may play a role in angiogenesis of endometrium and placenta through induction of IL-8 in endometrial stromal cells during pregnancy.


Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3349-3353 ◽  
Author(s):  
Je-Ho Han ◽  
Sun Jin Choi ◽  
Noriyoshi Kurihara ◽  
Masanori Koide ◽  
Yasuo Oba ◽  
...  

A complementary DNA expression library derived from marrow samples from myeloma patients was recently screened and human macrophage inflammatory protein-1α (hMIP-1α) was identified as an osteoclastogenic factor expressed in these samples. hMIP-1α enhanced osteoclast (OCL) formation in human marrow cultures and by highly purified OCL precursors in a dose-dependent manner (5-200 pg/mL). Furthermore, hMIP-1α enhanced OCL formation induced by human interleukin-6 (IL-6), which is produced by marrow stromal cells when they interact with myeloma cells. hMIP-1α also enhanced OCL formation induced by parathyroid hormone-related protein (PTHrP) and receptor activator of nuclear factor κB ligand (RANKL), factors also implicated in myeloma bone disease. Time-course studies revealed that the hMIP-1α acted during the last 2 weeks of the 3-week culture period. Reverse transcription–polymerase chain reaction analysis showed that the chemokine receptors for hMIP-1α (CCR1 and CCR5) were expressed by human bone marrow and highly purified early OCL precursors. Furthermore, hMIP-1α did not increase expression of RANKL. These data demonstrate that hMIP-1α is an osteoclastogenic factor that appears to act directly on human OCL progenitors and acts at the later stages of OCL differentiation. These data further suggest that in patients with myeloma, MIP-1α produced by myeloma cells, in combination with RANKL and IL-6 that are produced by marrow stromal cells in response to myeloma cells, enhances OCL formation through their combined effects on OCL precursors.


2007 ◽  
Vol 406 (1) ◽  
pp. 175-183 ◽  
Author(s):  
E. Linda R. Sheldrick ◽  
Kamila Derecka ◽  
Elaine Marshall ◽  
Evonne C. Chin ◽  
Louise Hodges ◽  
...  

Arachidonic acid is a potential paracrine agent released by the uterine endometrial epithelium to induce PTGS2 [PG (prostaglandin)-endoperoxide synthase 2] in the stroma. In the present study, bovine endometrial stromal cells were used to determine whether PTGS2 is induced by arachidonic acid in stromal cells, and to investigate the potential role of PPARs (peroxisome-proliferator-activated receptors) in this effect. Arachidonic acid increased PTGS2 levels up to 7.5-fold within 6 h. The cells expressed PPARα and PPARδ (also known as PPARβ) (but not PPARγ). PTGS2 protein level was increased by PPAR agonists, including polyunsaturated fatty acids, synthetic PPAR ligands, PGA1 and NSAIDs (non-steroidal anti-inflammatory drugs) with a time course resembling that of arachidonic acid. Use of agonists and antagonists indicated PPARα (but not PPARδ or PPARγ) was responsible for PTGS2 induction. PTGS2 induction by arachidonic acid did not require PG synthesis. PTGS2 levels were increased by the PKC (protein kinase C) activators 4β-PMA and PGF2α, and the effects of arachidonic acid, NSAIDs, synthetic PPAR ligands and 4β-PMA were blocked by PKC inhibitors. This is consistent with PPAR phosphorylation by PKC. Induction of PTGS2 protein by 4β-PMA in the absence of a PPAR ligand was decreased by the NF-κB (nuclear factor κB) inhibitors MG132 and parthenolide, suggesting that PKC acted through NF-κB in addition to PPAR phosphorylation. Use of NF-κB inhibitors allowed the action of arachidonic acid as a PPAR agonist to be dissociated from an effect through PKC. The results are consistent with the hypothesis that arachidonic acid acts via PPARα to increase PTGS2 levels in bovine endometrial stromal cells.


Endocrinology ◽  
2014 ◽  
Vol 155 (4) ◽  
pp. 1453-1465 ◽  
Author(s):  
Matthew L. Turner ◽  
James G. Cronin ◽  
Gareth D. Healey ◽  
Iain Martin Sheldon

Bacteria often infect the endometrium of cattle to cause endometritis, uterine disease, and infertility. Lipopeptides are commonly found among bacteria and are detected by the Toll-like receptor (TLR) cell surface receptor TLR2 on immune cells. Heterodimers of TLR2 with TLR1 or TLR6 activate MAPK and nuclear factor-κB intracellular signaling pathways to stimulate inflammatory responses. In the endometrium, epithelial and stromal cells are the first to encounter invading bacteria, so the present study explored whether endometrial cells can also mount inflammatory responses to bacterial lipopeptides via TLRs. The supernatants of pure populations of primary bovine endometrial epithelial and stromal cells accumulated the cytokine IL-6 and the chemokine IL-8 in response to triacylated or diacylated bacterial lipopeptides. The accumulation of IL-6 and IL-8 in response to triacylated lipopeptides was reduced by small interfering RNA targeting TLR2 or TLR1 but not TLR6, whereas cellular responses to diacylated lipopeptide were reduced by small interfering RNA targeting TLR2, TLR1, or TLR6. Both lipopeptides induced rapid phosphorylation of ERK1/2, p38, and nuclear factor-κB in endometrial cells, and inhibitors of ERK1/2 or p38 limited the accumulation of IL-6. The ovarian steroids estradiol and progesterone had little impact on inflammatory responses to lipopeptides. The endometrial epithelial and stromal cell responses to lipopeptides via TLR2, TLR1, and TLR6 provide a mechanism linking a wide range of bacterial infections to inflammation of the endometrium.


Sign in / Sign up

Export Citation Format

Share Document