scholarly journals Baicalein reduces endometriosis by suppressing the viability of human endometrial stromal cells through the nuclear factor-κB pathway in vitro

2017 ◽  
Vol 14 (4) ◽  
pp. 2992-2998 ◽  
Author(s):  
Zhixing Jin ◽  
Jianqin Huang ◽  
Zhiling Zhu
Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3638-3648 ◽  
Author(s):  
Bin Wu ◽  
Xihua Chen ◽  
Bin He ◽  
Shuyan Liu ◽  
Yunfeng Li ◽  
...  

Abstract Progesterone withdrawal triggers endometrial breakdown and shedding during menstruation. Menstruation results from inflammatory responses; however, the role of reactive oxygen species (ROS) in menstruation remains unclear. In this study, we explored the role of ROS in endometrial breakdown and shedding. We found that ROS levels were significantly increased before endometrial breakdown in a mouse menstrual-like model. Vaginal smear inspection, morphology of uterine horns, and endometrial histology examination showed that a broad range of ROS scavengers significantly inhibited endometrial breakdown in this model. Furthermore, Western blot and immunohistochemical analysis showed that the intracellular translocation of p50 and p65 from the cytoplasm into the nucleus was blocked by ROS scavengers and real-time PCR showed that cyclooxygenase-2 (COX-2) mRNA expression was decreased by ROS scavengers. Similar changes also occurred in human stromal cells in vitro. Furthermore, Western blotting and real-time PCR showed that one ROS, hydrogen peroxide (H2O2), promoted translocation of p50 and p65 from the cytoplasm to the nucleus and increased COX-2 mRNA expression along with progesterone maintenance. The nuclear factor κB inhibitor MG132 reduced the occurrence of these changes in human stromal cells in vitro. Viewed as a whole, our results provide evidence that certain ROS are important for endometrial breakdown and shedding in a mouse menstrual-like model and function at least partially via nuclear factor-κB/COX-2 signaling. Similar changes observed in human stromal cells could also implicate ROS as important mediators of human menstruation.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5888-5896 ◽  
Author(s):  
Shee-Uan Chen ◽  
Hsinyu Lee ◽  
Daw-Yuan Chang ◽  
Chia-Hung Chou ◽  
Chih-Yuan Chang ◽  
...  

Lysophosphatidic acid (LPA) is a pleiotropic phospholipid molecule involved in inflammation, angiogenesis, would healing, and cancer invasion. Whereas serum lysophospholipase D activity increases in women with pregnancy, the role of LPA in pregnancy remains unclear. We investigated the expression of LPA receptors and function of LPA in endometrial stromal cells. Histologically normal endometrium was obtained from surgical specimens of women undergoing hysterectomy for leiomyoma. First-trimester decidua was obtained from women receiving elective termination of pregnancy. We examined the expressions of LPA1, LPA2, and LPA3 receptors in endometrial stromal cells. The effects of LPA on the expression of vascular endothelial growth factor, IL-6, and IL-8 were examined. Signal pathways of LPA were delineated. Functions of secretory angiogenic factors were tested using human endometrial microvascular endothelial cells. Immunoreactivity and mRNA of LPA1 receptors were identified in endometrial stromal cells. LPA enhanced IL-8 expression in a dose- and time-dependent manner, whereas vascular endothelial growth factor or IL-6 expression was not affected by LPA treatment. Mechanistic dissection disclosed that LPA functioned via the Gi protein, MAPK/p38 and nuclear factor-κB pathway. LPA-induced IL-8 enhanced migration, permeability, capillary tube formation, and proliferation of human endometrial microvascular endothelial cells. Endometrial stromal cells express LPA1 receptors. Through the LPA1 receptor, LPA induces IL-8 expression via a nuclear factor-κB-dependent signal pathway. These results could suggest that LPA may play a role in angiogenesis of endometrium and placenta through induction of IL-8 in endometrial stromal cells during pregnancy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


Sign in / Sign up

Export Citation Format

Share Document