scholarly journals Antibacterial effect of copper sulfate against multi-drug resistant nosocomial pathogens isolated from clinical samples

2019 ◽  
Vol 35 (5) ◽  
Author(s):  
Lamia Benhalima ◽  
Sandra Amri ◽  
Mourad Bensouilah ◽  
Rachid Ouzrout

Background and Objective: With the emergence of antibiotic resistance and the hospital acquired infection, the interest for antimicrobial agents has recently increased again in public health. Copper is recommended as a supplementary method of increasing biological safety in the hospital environment. The objective of this study was to determine the antibacterial activity of copper sulfate salts on strains of bacterial pathogens isolated from different clinical pictures in different health establishment in Algeria. Methods: A total of 25 different bacterial isolates (16 Enterobacteriaceae, 5 Staphylococci, and 4 Pseudomonas) were tested for susceptibility to copper sulfate using minimum inhibitory concentration (MIC-Cu) and minimum bactericidal concentrations (MBC-Cu) determinations. All isolates were also tested for susceptibility to six antibiotics. Results: Antibiotic susceptibility studies revealed that 100% of isolates were resistant to one or more antibiotics. Fifty two percent of isolates were very susceptible to copper sulfate, with MICs ranging from 100 to 200 µg/ml. MBC-Cu = 1600 μg/ml showed the best bactericidal effect against the great majority of studied bacteria (52%). A good bactericidal activities of copper sulfate were recorded against Proteus vulgaris and Staphylococcus aureus (MBC/MIC=1). The Gram-negative bacteria isolates which were copper resistant also showed a high resistance to chloramphenicol (r=0.78) and Trimethoprime (r=0.61). Furthermore, the strains that were no-susceptible to three different antimicrobial classes (Escherichia coli, Staphylococcus saprophyticus) were not resistant to copper sulfate. Conclusion: Copper sulfate salts has significant antibacterial activity against multi-drug resistant nosocomial pathogens. doi: https://doi.org/10.12669/pjms.35.5.336 How to cite this:Benhalima L, Amri S, Bensouilah M, Ouzrout R. Antibacterial effect of copper sulfate against multi-drug resistant nosocomial pathogens isolated from clinical samples. Pak J Med Sci. 2019;35(5):---------.  doi: https://doi.org/10.12669/pjms.35.5.336 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2021 ◽  
Author(s):  
Xiangwen Liao ◽  
lianghong liu ◽  
yanhui Tan ◽  
guijuan jiang ◽  
haihong fang ◽  
...  

New effective antimicrobial agents with novel mode of action are urgently need due to the continued emergence of drug-resistant bacteria. Here, three ruthenium complexes functionalized with benzothiophene: [Ru(phen)2(BTPIP)](ClO4)2 (Ru(II)-1), [Ru(dmp)2(BTPIP)](ClO4)2...


2021 ◽  
Vol 8 ◽  
Author(s):  
Dong-Hyun Kim ◽  
Jung-Hyun Kim

The emergence of multidrug-resistant bacteria in companion animals is an increasing concern in view of the concept of One Health. The antimicrobials linezolid (LZD) and tigecycline (TGC) are effective against multidrug-resistant bacteria isolated from humans; however, thus far, no previous study has evaluated the efficacy of these drugs against bacteria isolated from companion animals. This study aimed to evaluate the efficacy of LZD and TGC against bacteria that were isolated from companion dogs and showed resistance to all classes of antimicrobial agents. Clinical samples (auditory channel, eye, skin, and urine) were collected from dogs that visited the Veterinary Medical Teaching Hospital of Konkuk University (Seoul, South Korea) from October 2017 to September 2020. In total, 392 bacterial isolates were obtained, of which 85 were resistant to all classes of antimicrobial agents tested and were, therefore, considered potentially pan-drug resistant (PDR). The susceptibility of isolates to LZD and TGC was determined by the disk diffusion method and interpreted using the Clinical Laboratory Standards Institute guidelines. In total, 95.6% (43/45) and 97.8% (44/45) of gram-positive isolates were susceptible to LZD and TGC, respectively, whereas 82.5% (33/40) of gram-negative isolates were sensitive to TGC. In conclusion, both agents showed favorable efficacy, with the susceptibility rates for all potential PDR bacteria, except Pseudomonas spp., ranging from 72.7 to 100%. Thus, these drugs may serve as excellent antimicrobial options for veterinary medicine in the future.


2019 ◽  
Vol 7 (6) ◽  
pp. 157 ◽  
Author(s):  
Dan Zhang ◽  
Ren-You Gan ◽  
Arakkaveettil Kabeer Farha ◽  
Gowoon Kim ◽  
Qiong-Qiong Yang ◽  
...  

Although spice extracts are well known to exhibit antibacterial properties, there is lack of a comprehensive evaluation of the antibacterial effect of spices against antibiotic-resistant bacteria. In the present study, ethanolic extracts from a total of 67 spices were comprehensively investigated for their in vitro antibacterial activities by agar well diffusion against two common food-borne bacteria, Staphylococcus aureus and Salmonella enteritidis, with multi-drug resistance. Results showed that S. aureus was generally more sensitive to spice extracts than S. enteritidis. Of the 67 spice extracts, 38 exhibited antibacterial activity against drug-resistant S. aureus, while only four samples were effective on drug-resistant S. enteritidis. In addition, 11 spice extracts with inhibition zones greater than 15 mm were further verified for their broad-spectrum antibacterial properties using another 10 drug-resistant S. aureus strains. It was found that five spice extracts, including galangal, fructus galangae, cinnamon, yellow mustard seed, and rosemary, exhibited the highest antibacterial capacity. Further cytotoxicity of these 11 spices was determined and LC50 values were found to be more than 100 μg/mL except for galangal, rosemary, and sage, whose LC50 values were 9.32 ± 0.83, 19.77 ± 2.17, and 50.54 ± 2.57, respectively. Moreover, the antioxidant activities (ferric-reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) values) and total phenolic content (TPC) of spice extracts were determined to establish possible correlations with the antibacterial activity. Although the antibacterial effect was positively correlated with the antioxidant activities and TPC, the correlation was weak (r < 0.5), indicating that the antibacterial activity could also be attributed to other components besides antioxidant polyphenols in the tested spice extracts. In conclusion, dietary spices are good natural sources of antibacterial agents to fight against antibiotic-resistant bacteria, with potential applications as natural food preservatives and natural alternatives to antibiotics in animal feeding.


2019 ◽  
Vol 1 (6) ◽  
pp. 2365-2371 ◽  
Author(s):  
Hanif Haidari ◽  
Nirmal Goswami ◽  
Richard Bright ◽  
Zlatko Kopecki ◽  
Allison J. Cowin ◽  
...  

The interplay between size and valence state in ∼3 nm silver nanoparticles resulted in the highest antibacterial effect against multi-drug resistant bacteria.


2012 ◽  
Vol 1 (6) ◽  
pp. 133-137 ◽  
Author(s):  
Rehnuma Sharmeen ◽  
Md Nazmul Hossain ◽  
Md Mahbubur Rahman ◽  
Md Javed Foysal ◽  
Md Faruque Miah

The studies were carried out to evaluate antibacterial activity of 35 aqueous herbal extracts against a total of 20 clinical Klebshiella sp. isolates. The maximum antibacterial activity was found as 90% in crude extracts of Syzygium aromaticum (leaf) and Citrus limon L. (fruit) followed by 85% in Spondias pinnata (leaf). Sensitivity of these isolates was also evaluated for eight commercial antibiotic discs following disc diffusion assay where most of the isolates found to develop resistance against multiple commercial antibiotics. 85% of isolates exhibited resistant to chloramphenicol and erythromycin and 80% were resiatant to sulfamethoxazole and cephradine. The isolates showed their resistance between 55-60 % to the other four antibiotic discs, viz; gentamycin, streptomycin, ciprofloxacin and azithromycin. Among 35 herbal extracts tested, 19 herbal extrats were found to possess antimicrobial activity in all multi-drug resistant isolates. Therefore these herbal extracts could be used in future direction as alternative therapeutic agents for the treatment of human diseases caused by Klebsiella sp. DOI: http://dx.doi.org/10.3329/icpj.v1i6.10534 International Current Pharmaceutical Journal 2012, 1(6): 133-137


Author(s):  
Sonali Gangwar ◽  
Keerti Kaushik ◽  
Maya Datt Joshi

Serious infectious diseases are caused by bacterial pathogens that represents a serious public health concern. Antimicrobial agents are indicated for the treatment bacterial infections.Various bacteria carries several resistance genes also called multidrug resistant (MDR). Multidrug resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting the reservoirs of antibiotic resistant bacteria are present outside the hospital. Drug resistant bacteria that are selected with a single drug are also frequently multi-drug resistant against multiple structurally different drugs, thus confounding the chemotherapeutic efficacy of infectious disease caused by such pathogenic variants. The molecular mechanisms by which bacteria have common resistance to antibiotics are diverse and complex. This review highlights the mechanism of bacterial resistance to antimicrobials.


Author(s):  
Olexandra Ilkov ◽  
Nazar Manko ◽  
Svitlana Bilous ◽  
Gennadi Didikin ◽  
Olga Klyuchivska ◽  
...  

Abstract The aim of the work is to to ascertain their antibacterial activity, as well as the toxic effects toward human cells of composites of silver nanoparticles immobilized by electron-beam technology onto crystals of antimicrobial agents metronidazole and levofloxacin The assessment of antibacterial activity and cytotoxic action of silver naonparticled metronidazole and levofloxacin composites was carried out using the MTT-test. Objects of study of antibacterial activity were three strains of microorganisms: Staphylococcus aureus ATCC25923, Escherichia coli dH5α, Pseudomonas aeruginosa ATCC9027. For the investigation of cytotoxic action, cells of HEK 293 line obtained from human kidney embryos were used. Nanocomposites of metronidazole and levofloxacin were tested at concentrations known as the minimum toxic dose of antibiotics and at concentrations reduced/increased in 2 times. Immobilization of silver nanoparticles on the surface of metronidazole and levofloxacin by electron-beam technology gives a different effect on their antibacterial and cytotoxic activity. Nanocomposites of metronidazole exhibit a weaker antibacterial effect on E. coli than metronidazole alone, while levofloxacin nanocomposites have higher antibacterial activity compared to levofloxacin alone. Nanocomposites of the levofloxacin, compared to free levofloxacin, are characterized by a higher antibacterial effect towards gram-negative bacteria (E. coli), but practically do not differ in activity toward P. aeruginosa and S. aureus. Immobilization of silver nanoparticles on metronidazole crystals does not affect on its cytotoxicity relative to pseudonormal human cells line HEK 293, while the nanocomposites of levofloxacin with silver are more toxic to these cells than levofloxacin alone.


Author(s):  
Sonali Gangwar ◽  
Keerti Kaushik ◽  
Maya Datt Joshi

Serious infectious diseases are caused by bacterial pathogens that represents a serious public health concern. Antimicrobial agents are indicated for the treatment bacterial infections.Various bacteria carries several resistance genes also called multidrug resistant (MDR). Multidrug resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting the reservoirs of antibiotic resistant bacteria are present outside the hospital. Drug resistant bacteria that are selected with a single drug are also frequently multi-drug resistant against multiple structurally different drugs, thus confounding the chemotherapeutic efficacy of infectious disease caused by such pathogenic variants. The molecular mechanisms by which bacteria have common resistance to antibiotics are diverse and complex. This review highlights the mechanism of bacterial resistance to antimicrobials.


2021 ◽  
Author(s):  
Pouya Amiri ◽  
Jalil Kardan-Yamchi ◽  
Hossein Kazemian ◽  
Faranak Rezaei

Abstract Biocompatible and non-toxic properties of chitosan make it a candidate with excellent application prospects in developing wound dressing conjugate compounds. Six different chitosan-based nanohybrid membranes were evaluated against multi-drug resistant bacterial isolates. Twenty-seven drug-resistant Staphylococcus aureus, Enterococcus faecalis, Acinetobacter baumannii, and Pseudomonas aeruginosa species were isolated from burn wound infections. Different combinations of chitosan, ciprofloxacin (CIP), biofunctionalized montmorillonite (MMT), and montmorillonite with sulfate chains (SMMT) were provided, and their antibacterial activity was assessed using the colony count method. Six Methicillin-resistant S. aureus, seven vancomycin-resistant E. faecalis, four A. baumannii, and 10 P. aeruginosa multi-drug resistant were identified. Chitosan and montmorillonite did not show significant antibacterial effect but, chitosan/SMMT/CIP was the most effective nanocomposite. Chitosan-based nanocomposites with ciprofloxacin could effectively reduce the susceptibility of drug-resistant bacterial isolates. Bacterial targeting using nanosystems provides an opportunity for effective antibiotic treatment by improving antibacterial efficacy.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


Sign in / Sign up

Export Citation Format

Share Document