Long Time Characterization of Solutions of Nonautonomous Boissonade Systems

2021 ◽  
Vol 10 (07) ◽  
pp. 2442-2456
Author(s):  
振琼 崔
Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Stefan Gründer

Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. Being almost ubiquitously present in neurons of the vertebrate nervous system, their precise function remained obscure for a long time. Various animal toxins that bind to ASICs with high affinity and specificity have been tremendously helpful in uncovering the role of ASICs. We now know that they contribute to synaptic transmission at excitatory synapses as well as to sensing metabolic acidosis and nociception. Moreover, detailed characterization of mouse models uncovered an unanticipated role of ASICs in disorders of the nervous system like stroke, multiple sclerosis, and pathological pain. This review provides an overview on the expression, structure, and pharmacology of ASICs plus a summary of what is known and what is still unknown about their physiological functions and their roles in diseases.


CivilEng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 14-34
Author(s):  
Konstantinos Tsiotsias ◽  
Stavroula J. Pantazopoulou

Experimental procedures used for the study of reinforcement to concrete bond have been hampered for a long time by inconsistencies and large differences in the obtained behavior, such as bond strength and mode of failure, depending on the specimen form and setup used in the test. Bond is controlled by the mechanics of the interface between reinforcement and concrete, and is sensitive to the influences of extraneous factors, several of which underlie, but are not accounted for, in conventional pullout test setups. To understand and illustrate the importance of specimen form and testing arrangement, a series of computational simulations are used in the present work on eight distinct variants of conventional bar pullout test setups that are used routinely in experimental literature for the characterization of bond-slip laws. The resulting bond strength increase generated by unaccounted confining stress fields that arise around the bar because of the boundary conditions of the test setup is used to classify the tests with respect to their relevance with the intended use of the results. Of the pullout setups examined, the direct tension pullout test produced the most conservative bond strength results, completely eliminating the contributions from eccentricity and passive confinement.


Author(s):  
Aldona Kipāne

The article gives an insight into criminological problems of bullying in school phenomena. Although the term “bullying” is a modern word, such behaviour has been known for a long time. Bullying is a manifestation of violent behaviour, which threatens the victim's health and safety. The aim of this article is to describe and analyse bullying as a form of expression of violence, showing the criminological aspects of this phenomenon. To achieve the aim of the article the following tasks are defined: to provide the theoretical and practical framework of the research phenomenon, to study and evaluate certain elements of the criminological characterization of the bullying: the description of a victim and a perpetrator, the evaluation of factors and directions of prevention. Theoretical analysis methods such as deconstruction, descriptive and complex analysis, and empirical research methods – document analysis, comparison and compilation were employed in this study.


2017 ◽  
Author(s):  
Irina M. Velsko ◽  
Katherine A. Overmyer ◽  
Camilla Speller ◽  
Matthew Collins ◽  
Louise Loe ◽  
...  

AbstractIntroductionDental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens.ObjectiveWe present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach.MethodsUltra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC- MS/MS for further characterization of polar metabolites and lipids, respectively. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss.ResultsDipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples.ConclusionsThe results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.


2010 ◽  
Vol 645-648 ◽  
pp. 33-36 ◽  
Author(s):  
Nobuyoshi Yashiro ◽  
Kazuhiko Kusunoki ◽  
Kazuhito Kamei ◽  
Akihiro Yauchi

The stable long time growth with the use of Si -C-Ti ternary solution was realized by improving the thermal condition during the growth. We have succeeded in obtaining a maximum 10 mm thick bulk 6H-SiC crystal, which is the largest bulk crystal ever obtained by the solution growth technique. The obtained crystal was free of cracks and exhibited a homogeneous light green color. The crystallinity of the grown crystal was characterized by X-ray rocking curve measurements using (0006) reflection and by the molten KOH etching. The mapping of the full width at half maximum (FWHM) revealed the average FWHM around 30 arc seconds and the minimal FWHM under 16 arc seconds. The etch pit density (EPD) was typically in the range between 104 and 105 cm-2, which was comparable to that of the crystal seed.


2020 ◽  
Author(s):  
Ehab Awad Al-Emam ◽  
Hilde Soenen ◽  
Joost Caen ◽  
Koen Janssens

Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators’ tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.


Sign in / Sign up

Export Citation Format

Share Document