scholarly journals Clay minerals from the Arkitsa fault gouge zone, in Central Greece, and implications for fluid flow

2017 ◽  
Vol 47 (2) ◽  
pp. 616 ◽  
Author(s):  
D. Papoulis ◽  
D. Romiou ◽  
S. Kokkalas ◽  
P. Lampropoulou

Clay minerals in shallow fault rocks are increasingly recognized as key to the mechanical and seismogenic behavior of faults and fluid flow circulation within the fault core and the surrounding damage zone. We therefore studied faultgouge mineralogy from samples derived from the ENE-trending Arkitsa fault zone, in east-central Greece, in order to testify if the fault is acting as a channel for fluid flow and whether the conditions that characterize the flow can be identified. Clay-gouge samples were collected within the fault core zone, as well as in the broader fault damage area. Consequently, the samples were analyzed by X-Ray Diffraction, SEM and Electron microprobe analyses. The minerals that were identified within the centre of the fault zone are: Montmorillonite, corrensite, illite, micro-calcite, dolomite, quartz, plagioclase and K-feldspars. The absence of corrensite, a clay mineral usually formed in hydrothermal conditions, in the samples from the broader fault damage area indicates that the circulation of hydrothermal fluids is mostly confined within and around the fault core zone. The assemblages within the fault gouge zone and especially the presence of corrensite, combined with the absence of laumontite, indicate hydrothermal alteration at neutral to alkaline conditions and a temperature range at about 100-150 oC.

2020 ◽  
Author(s):  
Jack Lee ◽  
Nick Roberts ◽  
Robert Holdworth ◽  
Andrew Aplin ◽  
Richard Haslam ◽  
...  

<p>Fractures and faults act as important permeable pathways in the subsurface and are of great significance to the petroleum industry and for future Carbon Capture and Storage. Fractures allow fluid-flow through impermeable units such as mudrocks and can affect how these lithologies act as top seals, source rocks and/or unconventional reservoirs. Natural fractures within mudrocks can strongly influence top seal integrity, primary migration and the performance of unconventional (e.g. shale gas) reservoirs. This project studies the exhumed, early-mature, Jurassic mudrock succession of the Cleveland Basin, NE England, combining structural geology with isotope geochemistry and geochronology. The primary objective is to provide an absolute chronology of faulting and fracturing through novel U-Pb geochronology of fracture-fill calcite. The abundance of well-exposed, natural fractures with different orientations and failure modes provides an opportunity to investigate the properties of these fractures, and provide a basin-wide temporal and spatial framework of evolving deformation. The second objective is to use trace element, stable isotope, and clumped isotope analyses, to constrain fluid composition and temperature. In combination, these objectives will provide an integrated understanding of fracturing, faulting and fluid migration during burial and exhumation of a sedimentary basin.</p><p>Current fracture-fill dates from U-Pb geochronology provide intriguing insights into the history of the Cleveland Basin. We have identified and dated three phases of deformation and associated fluid-flow that have contrasting kinematics and fluid-flow regimes. The E-W trending Flamborough Head Fault Zone (FHFZ) bounds the basin to the south, and calcite preserved in one of the major extensional faults provides ages of 64-56 Ma. Calcite from N-S to NNW-SSE trending normal faults and associated fractures in the north of the Cleveland Basin provide ages of 44-25 Ma, revealing a previously unknown phase of Cenozoic faulting, which we speculatively relate to salt-related deformation. Structural and petrographic information suggest that the E-W and N-S trending faults have contrasting fracture-fluid-flow systems. Large (up to 30 cm), chalk hosted, vuggy calcite cements with geopetal sediment-fills in the E-W fault zone suggest it acted as an open fluid conduit with voluminous fluid-flow, linking the shallow sub-surface with deeper levels of the stratigraphy. In contrast, typically thin (<5 mm) vein fills with varying crack-seal-slip type textures in the N-S mudstone-hosted fractures of the Cleveland Basin provide evidence of episodic slip of variable displacement (44-40 Ma); these fracture openings may partly be controlled by pore fluid pressures and pre-date fault movement along the regional Peak Fault and smaller scales N-S faults (40-25 Ma) which are characterised by damage zone calcite mineralisation and extensional jog structures. Initial stable isotopic results are giving indications of fluid temperatures and sourcing which will be built on further by clumped isotope and fluid inclusions work.</p>


2001 ◽  
Vol 172 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Philippe Gouze ◽  
Riad Hassani ◽  
Dominique Bernard ◽  
Anne Coudrain-Ribstein

Abstract We propose a model for simulating the changes in porosity and permeability caused by hydrothermal diagenesis in sedimentary aquifer where salinity, temperature and fluid flow vary in space and time. Such modifications of the hydrodynamic properties of the medium are bounded to geochemical reactions and groundwater flow. Fluid velocity is particularly low in deep reservoirs (typically less than 1 m/year). Then, the local equilibrium simplification, which is justified by a set of world-wide data of the chemical composition of groundwater, can be implemented toward straightforward transient calculations. In the model presented here, the coupled processes of fluid flow, temperature and chemical species transport are solved using well established methods. The originality of the model is the development carried on to predict the permeability evolution controlled by the mineral dissolution and precipitation. Usually to simulate permeability changes modelers use the classical porosity-permeability model based on statistical analyses of in situ or laboratory measurements. However, hydraulic conductivity changes are not controlled solely by porosity changes, but also depend on pore-scale structure transformations. Depending on the mineral type, the precipitation or dissolution of the same quantity of volumetric quantity will induce very different changes in the hydraulic conductivity. Principally clay minerals depict a wide range of atypical organisations of different microstructural characteristics of the porous media. The spatial distribution of these characteristics cannot be modelled at basin scale. Away from both too complicated and too unrealistically simplified approach, the model presented here is based on the calculation of the permeability evolution from the change in the mineral fraction due to mineral precipitation and dissolution. To simplify, the minerals are divided into two groups: clay minerals and non-clay minerals. The specific contribution of clay minerals is controlled by a single weighting coefficient. This coefficient is associated to the proportion of poorly connected porosity that characterize clay structure, albeit it is presently impossible to propose any quantitative relationship between the value of this parameter and the microstructural characteristics of the diagenetic clays. The model is tested here to simulate the evolution of the porosity and the permeability in a peculiar zone of the Paris Basin. The study area of several hundred meters large is inside the Dogger aquifer, close to the Bray fault zone where invasion of saline water from Triassic formation takes place. This zone is characterised by high thermal and salinity gradient as well as by the superposition of sub-horizontal regional flow and ascendant fault-controlled flow: it is an ideal case study for examining the importance of taking into account the specific contribution by clay minerals when computing permeability evolution. This study is proposed as a parameter sensibility analysis: - to compare the relative influence of the clay weighting coefficient, the temperature, the salinity, and the cementation exponent on the computed evolution of the permeability, - to discuss the consequences of the introduction of the clay weighting coefficient in comparison to the classical porosity - permeability evolution model, - to simulate various evolution scenarios of past and future thermal and geochemical constraints and their consequences on the evolution of the permeability changes in the Bray fault zone taking into account uncertainties on the value of the clay weighting coefficient and on the cementation exponent. Forty-one simulations of one million years were necessary to cover a large spectrum of the expected variations of each parameter. The results show that: - the local variation of the permeability depends on the time evolution of temperature and of salinity, and on the values of the cementation exponent of the porosity-permeability law and of the clay weighting coefficient. Within reasonable ranges of these four parameters, their influence on the permeability changes is of the same order of magnitude, - the influence of the clay weighting coefficient on the porosity evolution is negligible. Feedback effects of permeability evolution on the porosity evolution, through the change in the flow regime, is minor, - by the use of a classical model without a clay weighting coefficient, permeability and porosity present the same pattern of evolution: they both increase or decrease. By the use of the clay weighting coefficient, in some places the permeability and porosity can show opposite evolution. One increases when the other decreases even for low values of the coefficient, - in the vicinity of the fault, the model predict an increase of permeability independently of potential temperature and salinity modifications and whatever the clay mineral weighting coefficient is: Bray fault sealing is unlikely as long as head gradient is maintained in the fracture zone.


2020 ◽  
Author(s):  
Ulrich Kelka ◽  
Thomas Poulet ◽  
Luk Peeters

<p>Fault and fracture networks can govern fluid flow patterns in the subsurface and predicting fluid flow on a regional scale is of interest in a variety of fields like groundwater management, mining engineering, energy, and mineral resources. Especially the pore fluid pressure can have a strong impact on the strength of fault zones and might be one of the drivers for fault reactivation. Reliable simulations of the transient changes in fluid pressure need to account for the generic architecture of fault zones that comprises strong permeability contrast between the fault core and damage zone.</p><p>Particularly, the distribution and connectivity of large-scale fault zones can have a strong impact on the flow field. Yet, modelling numerically such features in their full complexity remains challenging. Often faults zones are conceptualized as forming exclusively either barriers or conduits to fluid flow. However, a generic architecture of fault zones often comprises a discrete fault core surrounded by a diffuse damage zone and conceptualizing large scale discontinuities simply as a barrier or conduit is unlikely to capture the regional scale fluid flow dynamics. It is known that if the fault zone is hosted in low-permeability strata, such as clays or crystalline rocks, a transversal flow barrier can form along the fault core whereas the fracture-rich fault damage zone represents a longitudinal conduit. In more permeable host-rocks (i.e. sandstones or carbonates) the reverse situation can occur, and the permeability distributions in the damage zones can be governed by the abundance of low-permeability deformation features. A reliable numerical model needs to account for the difference and strong contrasts in fluid flow properties of the core and the damage zone, both transversally and longitudinally, in order to make prediction about the regional fluid flow pattern.</p><p>Here, we present a numerical method that accounts for the generic fault zone architecture as lower dimensional interfaces in conforming meshes during fluid flow simulations in fault networks. With this method we aim to decipher the impact of fault zone architecture on subsurface flow pattern and fluid pressure evolution in fractures and faulted porous media. The method is implemented in a finite element framework for Multiphysics simulations. We demonstrate the impact of considering the more generic geological structure of individual faults on the flow field by conceptualizing discontinuities either as barriers, conduits or as a conduit-barrier system and show were these conceptualizations are applicable in natural systems. We further show that a reliable regional scale fluid flow simulation in faulted porous media needs to account for the generic fault zone architecture. The approach is finally used to evaluate the fluid flow response of statistically parameterised faulted media, in order to investigate the impact and sensitivity of each variable parameter.</p>


2019 ◽  
Author(s):  
Carson L. Broaddus ◽  
◽  
Kimberly A. Hannula ◽  
Robert W. Krantz
Keyword(s):  

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
László Molnár ◽  
Balázs Vásárhelyi ◽  
Tivadar M. Tóth ◽  
Félix Schubert

AbstractThe integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ∼15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.


2021 ◽  
Author(s):  
Kyriaki Drymoni ◽  
John Browning ◽  
Agust Gudmundsson

<p>Dykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. Here we report field observations from a well-exposed dyke swarm of the Santorini volcano, Greece, that show dykes and inclined sheets deflected into faults and the results of analytical and numerical models to explain the conditions for deflection. The deflected dykes and sheets belong to a local swarm of 91 dyke/sheet segments that was emplaced in a highly heterogeneous and anisotropic host rock and partially cut by some regional faults and a series of historic caldera collapses, the caldera walls providing, excellent exposures of the structures. The numerical models focus on a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively more compliant rocks with increasing distance from the fault rupture plane. We model sheet-intrusions dipping from 0˚ to 90˚ and with overpressures of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the sheet thickness, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional extension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths.</p>


Sign in / Sign up

Export Citation Format

Share Document