scholarly journals Reaction products of clay minerals with sodium hydroxide under hydrothermal conditions

Author(s):  
Katsutoshi Tomita
SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 1050-1060 ◽  
Author(s):  
Qin Ji ◽  
Lijun Zhou ◽  
Hisham Nasr-El-Din

Summary Aluminum chloride (AlCl3) has been used as a retarding agent for mud acid for a long time; its applications are studied in the laboratory and tested in the field. The theory and mechanism of AlCl3 retardation were investigated in many works involving mud acidizing and reservoir-permeability enhancement. This paper furthers this investigation with solubility tests, coreflood tests, and 19F nuclear magnetic resonance (NMR) to better understand the mechanism of AlCl3 working as a retarding agent in mud acid. The reactivity of Al-based retarded mud acid (15 wt% HCl, 1.5 wt% HF, and 5 wt% AlCl3·6H2O) with clay minerals and sandstones at different conditions has not been examined fully. To enhance the acid performance and to minimize formation damage, a systematic investigation of the interactions between the Al-based retarded mud acid and clay minerals in sandstone reservoirs is provided in this study. Furthermore, for the first time, 19F NMR spectroscopy was used to follow the reactions of Al-based retarded mud acid with clay minerals. Solubility tests were performed to evaluate the retardation of the Al-based retarded mud acid when reacted with kaolinite, bentonite, and illite. Inductively coupled plasma (ICP) and 19F NMR were used to analyze the concentrations of key cations and components in the supernatant, whereas the scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) techniques were used to identify the reaction products and to explore the possibility of the presence of any precipitation. Coreflood tests of sandstone cores were also conducted. This study shows that AlCl3 can retard the reaction of hydrofluoric acid (HF) with kaolinite, bentonite, or illite at 75 and 200 °F in Al-based retarded mud acid. Even with 5 wt% AlCl3·6H2O added in the acid system, no AlF3 precipitate was observed in any of the solubility tests. 19F NMR results showed that AlF4− and AlF3 were the only Al-F species existing in the spent Al-based retarded mud acid. H2SiF6 and HSiF5 were also identified. Coreflood tests showed significant permeability improvement to Berea sandstone when Al-based retarded mud acid was used, and the enhancement diminished when the temperature increased to 300 °F. Computed-tomography (CT) scan showed deeper penetration of Al-based retarded mud acid than mud acid at 75 °F, and the penetration reduced when temperature increased to 200 °F. On the basis of these results, new mechanisms were developed to better understand the reaction of Al-based retarded mud acid and clay minerals.


2017 ◽  
Vol 47 (2) ◽  
pp. 616 ◽  
Author(s):  
D. Papoulis ◽  
D. Romiou ◽  
S. Kokkalas ◽  
P. Lampropoulou

Clay minerals in shallow fault rocks are increasingly recognized as key to the mechanical and seismogenic behavior of faults and fluid flow circulation within the fault core and the surrounding damage zone. We therefore studied faultgouge mineralogy from samples derived from the ENE-trending Arkitsa fault zone, in east-central Greece, in order to testify if the fault is acting as a channel for fluid flow and whether the conditions that characterize the flow can be identified. Clay-gouge samples were collected within the fault core zone, as well as in the broader fault damage area. Consequently, the samples were analyzed by X-Ray Diffraction, SEM and Electron microprobe analyses. The minerals that were identified within the centre of the fault zone are: Montmorillonite, corrensite, illite, micro-calcite, dolomite, quartz, plagioclase and K-feldspars. The absence of corrensite, a clay mineral usually formed in hydrothermal conditions, in the samples from the broader fault damage area indicates that the circulation of hydrothermal fluids is mostly confined within and around the fault core zone. The assemblages within the fault gouge zone and especially the presence of corrensite, combined with the absence of laumontite, indicate hydrothermal alteration at neutral to alkaline conditions and a temperature range at about 100-150 oC.


Clay Minerals ◽  
1980 ◽  
Vol 15 (3) ◽  
pp. 263-274 ◽  
Author(s):  
V. A. Frank-Kamenetskii ◽  
N. V. Kotov ◽  
A. A. Rjumin

AbstractExperimental transformations of feldspars and muscovites following additions of magnesite and dolomite have been studied at PH2O = 1 kbar, T = 200–600°C. Formation of layer silicates such as smectite, 7 Å (Mg,Al)-serpentine, some mixed-layer phases and other minerals is shown to be a function of the composition of the starting materials, temperature and run duration. It is established that 1 M- and 2 M1-phlogopites are formed from 1 M- and 2 M1-muscovites, respectively, under Mg-bearing hydrothermal conditions. Some causes of variations in the composition of 7 Å (Mg,Al)-serpentines at elevated temperature as a function of the composition of hydrothermal media are given. These data may be used to explain the main characteristics of clay mineral formation from feldspar- and muscovite-bearing sedimentary rocks during their alteration in postdiagenetic and metasomatic processes.


Clay Minerals ◽  
1990 ◽  
Vol 25 (1) ◽  
pp. 121-125 ◽  
Author(s):  
V. A. Frank-Kamenetskii ◽  
E. A. Goilo ◽  
N. V. Kotov ◽  
M. Rieder

It has been shown that clay minerals transform into (Mg, Al) or (Ni,Al) serpentine-like phases if treated hydrothermally in the presence of MgCO3 or NiCO3 (Shitov et al., 1974, Frank-Kamenetskii et al., 1978, 1983a,b; Kotel'nikova et al., 1976; Varela et al., 1983; Kotov et al., 1985; Ryumin et al., 1978) and that the polytypism of the initial kaolins is inherited by the products. It has also been shown that (Mg,Al) serpentine-like phases react with KC1 to form dioctahedral micas and Mg-rich serpentine phases, but the latter do not react to trioctahedral micas (Kotel'nikova et al., 1976). Consequently, it was desirable to look for mechanisms for obtaining trioctahedral micas from serpentine-like phases.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pierre Jacquemot ◽  
Jean-Christophe Viennet ◽  
Sylvain Bernard ◽  
Corentin Le Guillou ◽  
Baptiste Rigaud ◽  
...  

AbstractExpanding our capabilities to unambiguously identify ancient traces of life in ancient rocks requires laboratory experiments to better constrain the evolution of biomolecules during advanced fossilization processes. Here, we submitted RNA to hydrothermal conditions in the presence of a gel of Al-smectite stoichiometry at 200 °C for 20 days. NMR and STXM-XANES investigations revealed that the organic fraction of the residues is no longer RNA, nor the quite homogeneous aromatic-rich residue obtained in the absence of clays, but rather consists of particles of various chemical composition including amide-rich compounds. Rather than the pure clays obtained in the absence of RNA, electron microscopy (SEM and TEM) and diffraction (XRD) data showed that the mineralogy of the experimental residues includes amorphous silica and aluminosilicates mixed together with nanoscales phosphates and clay minerals. In addition to the influence of clay minerals on the degradation of organic compounds, these results evidence the influence of the presence of organic compounds on the nature of the mineral assemblage, highlighting the importance of fine-scale mineralogical investigations when discussing the nature/origin of organo-mineral microstructures found in ancient rocks.


Clay Minerals ◽  
1982 ◽  
Vol 17 (3) ◽  
pp. 271-283 ◽  
Author(s):  
G. Bayer ◽  
G. Kahr ◽  
M. Mueller-Vonmoos

AbstractInteractions of ammonium sulphates and various silicate and oxide minerals have been studied by X-ray heating methods and simultaneous TG-DTA. Kaolinite and other clay minerals were found to be very susceptible to these sulphating treatments, (NH4)3Al(SO4)3, (NH4)Al(SO4)2 and Al2(SO4)3 being formed successively with increasing temperature from 350 to ∼550°C. The same reaction products were obtained on heating mixtures of (NH4)2SO4 and γ-Al2O3, Al(OH)3 and bauxite. Fe-, Mg- and Ti-silicates and oxides gave NH4-double sulphates below 400°C and the corresponding metal sulphates above this temperature.


2010 ◽  
Vol 74 (4) ◽  
pp. 659-681 ◽  
Author(s):  
B. Budzyń ◽  
C. J. Hetherington ◽  
M. L. Williams ◽  
M. J. Jercinovic ◽  
M. Michalik

AbstractClasts of metamorphosed Cadomian granites from the ∼50—60 Ma Carpathian flysch in Gródek near the Rożnowskie Lake (Silesian Unit, SE Poland) are studied. They are considered to represent the Silesian Ridge, one of the hypothetical, currently unexposed source areas that supplied Carpathian sedimentary basins with clastic material. The gneisses preserve several examples of corona textures that include cores of primary monazite surrounded by polygonal grains of secondary apatite with thorianite inclusions, with intermediate zones of lamellar grains of secondary monazite and outermost rims of clay minerals, or various combinations thereof. Preservation of the complete textures is rare with polygonal apatite with thorianite inclusions, lamellar grains of monazite and clay minerals being particularly prevalent. Locally, polygonal apatite with thorianite inclusions surrounded by allanite andREE-epidote corona with a bastnasite-synchysite phase occurs also. The textures observed developed during primary monazite breakdown and replacement by secondary minerals. The variation in reaction products indicates that alteration was strictly dependent on the local chemical system.


2007 ◽  
Vol 13 (3) ◽  
pp. 201-207 ◽  
Author(s):  
Zdzisława Owsiak

In the present paper, results of alkali reactivity tests for selected silica aggregates, both rapid and slow alkali reactive, with the use of ASTM procedures, have been presented. The tests have covered the determination of the aggregate silica content dissolved in a solution of sodium hydroxide; scale of the expansion of mortar and concrete bars with the silica aggregate and high‐alkali cement; as well as scale of the expansion of the mortar bars stored in a sodium hydroxide solution at 80 °C. Exemplary photographs of the microstructure of alkali reaction products for the selected silica aggregates have also been presented. Summing up the results of standard methods of the aggregate testing, considering their alkali sensitivity, the method which tests the deformation of the concrete bars including the aggregate at issue and increased alkali content cement seems to be the most conclusive. However, the test duration up to 180 days is too short, particularly for defining the slow‐reactive aggregates reactivity, such as, for example, granites or quartzites. A major diagnostic symptom which confirms the occurrence of the alkali‐aggregate reaction is the presence of the reaction products (alkali silicate gel) in the concrete.


Author(s):  
A. V. Stennikov ◽  
I. A. Bugaev ◽  
A. G. Kalmykov ◽  
A. Yu. Bychkov ◽  
E. V. Kozlova ◽  
...  

The experimental results on the synthetic oil production from Domanik Formation rocks under hydrothermal conditions are given. Oil fractions extracting potential of the rocks under hydrothermal was shown to be up to 60 mg/g or 6,0 wt.%. Inorganic additives (sodium carbonate or silica) incorporation does not influence on the oil recovery factor. Meanwhile the amount of recoverable oil products depends on the mineral composition of the rock. The dependence between the percentage of hydrocarbons emission and mineral composition of the rocks was determined. Clay minerals and silica increase the yield of synthetic oil, carbonates, conversely, inhibit the process.


Sign in / Sign up

Export Citation Format

Share Document