scholarly journals Distinguishing Features of Phase Transformation in the Surface Layer of Hardened Steel with (α+γ)-Two-Phase Structure during Plasto-Elastic Loading at Different Rates

1996 ◽  
Vol 89 (3) ◽  
pp. 353-356
Author(s):  
L.E. Alekseeva ◽  
V.A. Sinelnikov ◽  
G.A. Filippov
MRS Advances ◽  
2017 ◽  
Vol 2 (25) ◽  
pp. 1335-1340
Author(s):  
T. Yamanouchi ◽  
S. Miura ◽  
M. Ohno ◽  
K. Ikeda

ABSTRACTFor the improvement of oxidation resistance of Nb-based alloys, PdAl-B2 is expected as Al reservoir for Al2O3 surface layer because it is in equilibrium with Nbss (bcc) phase. However, PdAl forms cracks during casting caused by B2 -> β’ transformation. To suppress B2 -> β’ transformation, Rh, Ru and Ir were chosen as additive elements. It is found that bcc / B2 two-phase field in Nb-Pd-Ir-Al system is limited to be small fraction of Ir, while (Pd,Rh)Al-B2 is in equilibrium with bcc solid solution in a wide composition range and addition of Rh prevents occurrence of B2 -> β’ transformation. Composition range of (Pd,Ru)Al-B2 in equilibrium with bcc phase is wider than (Pd,Ir)Al-B2 but narrower than (Pd,Rh)Al-B2. Rh and Ru addition are also beneficial for improving eutectic temperature of Nb-bcc / B2 aluminide two-phase alloys.


Author(s):  
Abhijit Biswas ◽  
Suman Kalyan Das ◽  
Prasanta Sahoo

The microstructural changes of electroless Ni–P–Cu coating at various heat-treatment conditions are investigated to understand its implications on the tribological behavior of the coating. Coatings are heat-treated at temperatures ranging between 200°C and 800 °C and for 1–4 h duration. Ni–P–Cu coatings exhibit two-phase transformations in the temperature range of 350–450 °C and the resulting microstructural changes are found to significantly affect their thermal stability and tribological attributes. Hardness of the coating doubles when heat-treated at 452 °C, due to the formation of harder Ni3P phase and crystalline NiCu. Better friction and wear performance are also noted upon heat treatment of the coating at the phase transformation regime, particularly at 400 °C. Wear mechanism is characterized by a mixed adhesive cum abrasive wear phenomena. Heat treatment at higher temperature (600 °C and above) and longer duration (4 h) results in grain coarsening phenomenon, which negatively influences the hardness and tribological characteristics of the coating. Besides, diffusion of iron from the ferrous substrate as well as greater oxide formation are noticed when the coating is heat-treated at higher temperatures and for longer durations (4 h).


1981 ◽  
Vol 59 (1) ◽  
pp. 127-131 ◽  
Author(s):  
Alan N. Campbell

The properties named in the title have been determined by standard methods. Viscosity, molar volume, and orientation polarisation all indicate abnormalities of the nature of association between the components.The most interesting result is that of surface tension which indicates that, in the case of the binary system triethylamine–water, a surface layer of constant composition is formed over a wide range of total composition. When, by a rise in temperature of two or three degrees, this layer becomes unstable, it splits into two phases of different composition. The surface layer may then be instantaneously reformed and so on. A mechanism for the generation of a two-phase system is thus established. The data for the three-phase, isothermal, system are not so convincing, for reasons that are suggested.


2014 ◽  
Vol 8 (3) ◽  
pp. 136-140 ◽  
Author(s):  
Maciej Ryś

Abstract In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.


Sign in / Sign up

Export Citation Format

Share Document