scholarly journals Specific Characteristics and Varietal Dif-ferences for Seed Protein Percentage and Sulfur-Containing Amino Acid Contents in Japanese Wild Soybean (Glycine soja), and Its Significance on the Soybean (G.max) Breeding Program

1974 ◽  
Vol 24 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Norihiko KAIZUMA ◽  
Juro FUKUI
Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1001
Author(s):  
Jagadeesh Sundaramoorthy ◽  
Gyu Tae Park ◽  
Hyun Jo ◽  
Jeong-Dong Lee ◽  
Hak Soo Seo ◽  
...  

The enzyme flavonoid 3′,5′-hydroxylase (F3′5′H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3′5′H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower’s pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A304S) in a highly conserved SRS4 domain of F3′5′H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3′5′H activity rather than non-functional activity, which thereby results in its pinkish-white color.


2021 ◽  
Vol 19 (1) ◽  
pp. 35-43
Author(s):  
Awatsaya Chotekajorn ◽  
Takuyu Hashiguchi ◽  
Masatsugu Hashiguchi ◽  
Hidenori Tanaka ◽  
Ryo Akashi

AbstractWild soybean (Glycine soja) is a valuable genetic resource for soybean improvement. Seed composition profiles provide beneficial information for the effective conservation and utilization of wild soybeans. Therefore, this study aimed to assess the variation in free amino acid abundance in the seeds of wild soybean germplasm collected in Japan. The free amino acid content in the seeds from 316 accessions of wild soybean ranged from 0.965 to 5.987 mg/g seed dry weight (DW), representing a 6.2-fold difference. Three amino acids had the highest coefficient of variation (CV): asparagine (1.15), histidine (0.95) and glutamine (0.94). Arginine (0.775 mg/g DW) was the predominant amino acid in wild soybean seeds, whereas the least abundant seed amino acid was glutamine (0.008 mg/g DW). A correlation network revealed significant positive relationships among most amino acids. Wild soybean seeds from different regions of origin had significantly different levels of several amino acids. In addition, a significant correlation between latitude and longitude of the collection sites and the total free amino acid content of seeds was observed. Our study reports diverse phenotypic data on the free amino acid content in seeds of wild soybean resources collected from throughout Japan. This information will be useful in conservation programmes for Japanese wild soybean and for the selection of accessions with favourable characteristics in future legume crop improvement efforts.


2019 ◽  
Vol 67 (44) ◽  
pp. 12313-12321
Author(s):  
Yujie Ma ◽  
Weiyu Ma ◽  
Dezhou Hu ◽  
Xinnan Zhang ◽  
Wenjie Yuan ◽  
...  

2019 ◽  
Vol 132 (6) ◽  
pp. 1639-1659 ◽  
Author(s):  
Sungwoo Lee ◽  
Kyujung Van ◽  
Mikyung Sung ◽  
Randall Nelson ◽  
Jonathan LaMantia ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Ke-Jing Wang ◽  
Tetsuro Yamashita ◽  
Masao Watanabe ◽  
Yoshihito Takahata

A novel variant of soybean Kunitz trypsin inhibitor (SKTI) was detected in 530 lines of wild soybean (Glycine soja). This variant showed an intermediate electrophoretic mobility between the Tia and Tic types. In isoelectric focusing polyacrylamide gel electrophoresis gels containing urea, this variant had a similar isoelectric point as that of Tia. The genetic analysis of SKTI bands in F2 seeds from crosses of the new variant type with Tia or Tic type showed that this variant type is controlled by a codominant allele at the SKTI locus. We propose the genetic symbol Tif for this novel variant. When the nucleotide sequence of the Tif gene was compared with those of other types of SKTI genes (Tia, Tib, and Tic), the sequence of Tif was identical to that of Tib with the exception of one A[Formula: see text]G transitional mutation occurring at position 676 of Tif. This mutation resulted in an amino acid change from Lys to Glu at the 178 residue. These results suggest that this variant is derived from Tib through a point mutation. In addition, we settled an inconsistency in the number of amino acid differences between Tia and Tib (eight or nine). Analysis of nucleotide and amino acid sequences revealed that Tib was different from Tia by nine amino acids.Key words: soybean Kunitz trypsin inhibitor, polymorphism, gene sequence, soybean, wild soybean.


2018 ◽  
Author(s):  
◽  
Thang Cao La

The relatively low genomic variation of current U.S. soybean [Glycine max (L.) Merill] cultivars constrains the improvement of grain yield, seed quality, and other agronomic traits within soybean breeding programs. Recently, a substantial effort has been undertaken to introduce novel genetic diversity present in wild soybean (Glycine soja Siebold and Zucc.) into new elite cultivars, in both public and private applied soybean breeding programs. The objectives of this research were to evaluate the phenotypic diversity within a core collection of 80 G. soja plant introductions (PIs) in the United States Department of Agriculture National Genetic Resources Program that were collected in China, Japan, Russia, and South Korea, and to analyze the correlations between agronomic and seed composition traits. Field tests were conducted in Missouri and North Carolina during three years, 2013, 2014, and 2015, in a randomized complete block design (n=3). The phenotypic data collected included plant maturity date, seed weight, and the seed concentration of protein, oil, essential amino acid, fatty acid, and soluble carbohydrates. Analyzing the data from six environments, we found genotype was a significant (p less than 0.0001) source of variation for maturity date, seed weight, seed protein and amino acids, seed oil and fatty acids, and seed carbohydrates. Significant correlations were observed between numerous traits. The core collection had lower seed weight, higher seed content of protein, linolenic acid, raffinose and stachyose but lower seed content of oil and oleic acid than those of the cultivated soybean lines that were used as checks. The amino acid profile of the core collection was significantly different from that of the checks. An association analysis revealed 19 SNP that were significantly associated with maturity, seed weight, and seed contents of aspartic acid, glutamine, palmitic acid, oleic acid, and linoleic acid. The information and data collected in this study will be invaluable in guiding soybean breeders and geneticists in selecting promising Glycine soja plant introductions for research and cultivar improvement. In addition the identification of quantitative trait loci (QTLs) associated with the contents of seed protein and oil, maturity, branching traits, height, lodging, and yield in a recombinant inbred line (RIL) population developed from one single F2 plant from the cross between Osage and PI593983 was carried out. The mapping population in this study included 164 F4:6 recombinant inbred lines (RILs) derived from a cross between Osage, a cultivated soybean variety, and PI593983, a wild soybean accession. Field tests were carried out in Missouri for two years during 2016 and 2017, in a randomized complete block design (n=2). Both protein and oil contents showed high heritabilities. Seed protein and seed oil were negatively correlated (-0.77). A total of 4,374 polymorphic markers were used to construct a genetic linkage map, and nine QTLs for protein content, explained 7.6 to 36.7% of variance, and seven QTLs for oil content, explained for 7.8 to 29.7% of variance, were detected using composite interval mapping. addition we identified eight novel QTLs and confirmed sixteen QTLs associated with maturity (R2 = 6.4 to 26.3%), plant height (R2 = 7.4 to 15.5%), and total branch length (R2 = 9.3% and 14.5%) in individual and across environments, and the ratio of total branch length to plant height (R2 = 11.8%), yield (R2 =12.8 and 15.7), and lodging (R2 = 12.1 and 13.4) in individual studied environments. Sixteen QTLs for maturity, yield, and plant height confirmed previously reported QTLs, and eight QTLs have not been reported before. The results of this study will facilitate the identification of the causative genes for seed protein and oil, maturity, height, lodging, and branching traits, and will help soybean breeder improve soybean performance by developing markers for marker-assisted selection.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
EJ Cho ◽  
XL Piao ◽  
MH Jang ◽  
SY Park ◽  
SW Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document