Waveguade measurements of parameters the dielectric resonators in microwave

Author(s):  
Алексейчик ◽  
Leopard Alekseychik ◽  
Жохова ◽  
Marina Zhokhova ◽  
Любимова ◽  
...  

The article contains experimental data measurements of dielectric resonators (DR) made out of modern thermostable ceramic with high quality factor values and relative dielectric permittivity in the UHF frequency range. Unlike the hollow metallic microwawe resonators own parameters DR greatly depend on the design and its constituent elements, which installed DR. Measurement technique is based on the experimental scattering matrix defining the elements of dielectric resonators established in waveguide transmission lines and then calculate the integral parameters (resonance frequency and quality factor DR) of frequency characteristics of scattering matrix measurement of waveguide section.

1999 ◽  
Vol 14 (2) ◽  
pp. 500-502
Author(s):  
Seungbum Hong ◽  
Eunah Kim ◽  
Han Wook Song ◽  
Jongwan Choi ◽  
Dae-Weon Kim ◽  
...  

It has been generally accepted that the product of the unloaded quality factor and resonant frequency is the universal parameter for comparison of dielectric resonators with different size.1,2 However, it is suggested in this study that this universal parameter should be modified due to the presence of the polarons. From the frequency dependence of the unloaded quality factor, it is possible to extract the factor determined only by the phonon scattering effects, and we denoted this parameter by Qs. It was found that the Qs parameter for ZrxSnzTiyO4 (ZST) and Ba(Zn1/3Ta2/3)O3 (BZT) ceramics showed constancy in the frequency range of 2–12 GHz, which supports the idea of polaron conduction loss contribution to the dielectric loss.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000054-000058 ◽  
Author(s):  
Goran Radosavljević ◽  
Andrea Marić ◽  
Walter Smetana ◽  
Ljiljana Živanov

This paper presents for the first time a parallel comparison of the performance of RF inductors realized on different substrate configurations. Presented inductors are meander type structures fabricated in Low Temperature Co-fired Ceramic (LTCC) technology. Also, chosen material is never before implemented for inductor fabrication. The performance improvement is achieved by design optimization of different substrate configurations that incorporate placement of an air-gap beneath the inductor and/or introduction of an additional shielding layer on the top. Designed structures are characterized on the basis of simulation and experimental data, achieving good correlation between obtained results. Presented results show over 30 % increase in quality factor and widening of the operating frequency range by over 55 %.


ACS Photonics ◽  
2016 ◽  
Vol 3 (12) ◽  
pp. 2362-2367 ◽  
Author(s):  
Salvatore Campione ◽  
Sheng Liu ◽  
Lorena I. Basilio ◽  
Larry K. Warne ◽  
William L. Langston ◽  
...  

Author(s):  
S.V. Kosyanenko ◽  
E.V. Patraev ◽  
V.V. Petrusev ◽  
I.V. Trifanov

Satellite onboard equipment includes waveguide transmission lines. One of the tasks to be solved is the temperature decoupling of the waveguide path and onboard equipment devices. In order to prevent waveguide path deformation during expansion/contraction due to thermal effects, the waveguide is equipped with a flexible waveguide section capable of changing the length without deteriorating radio technical characteristics. The paper considers the issues of fabrication of flexible waveguide parts, concerning the requirements for structure, properties, heat treatment of raw materials, dimensions of workpieces, equipment, and tooling. Within the study, we optimized and tested in practice operations of the technological process of extracting parts from sheet material, rolling, profiling, and shaping, which make it possible to manufacture parts of waveguide paths of the required quality.


2019 ◽  
Vol 30 ◽  
pp. 06015
Author(s):  
Nickolay Malyutin ◽  
Alexandra Malyutina ◽  
Georgiy Malyutin ◽  
Alexander Zabolotsky

The split strip lines (SSL) with adjustable parameters and examples of devices based on them are examined. Changing the parameters of the split strip lines are carried out with the help of so-called controlling strips, coupled with parts of the split strip line and having a strong electromagnetic coupling with them. Between controlling strips and the screen the lumped regulating elements are included. In wide frequency range such strip structures can be considered as transmission lines with changeable characteristic impedance and changeable propagation coefficient. Frequency analysis of of scattering matrix S of controlled split strip lines with different circuits of strip inclusion is carried out. Examples of the use of split strip lines with adjustable parameters in the design of different devices were discussed.


2016 ◽  
Vol 62 ◽  
pp. 77-82 ◽  
Author(s):  
Dajun Lei ◽  
Feng Qiu ◽  
Jinggui Zhang ◽  
Hui Dong ◽  
Zhenhua Tang ◽  
...  

2014 ◽  
Vol 134 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Nguyen Van Toan ◽  
Masaya Toda ◽  
Yusuke Kawai ◽  
Takahito Ono

Author(s):  
Nina B. Rubtsova ◽  
Sergey Yu. Perov ◽  
Olga V. Belaya ◽  
Tatiana A. Konshina

Introduction. Electromagnetic safety of power grid facilities staff requires the exclusion of electromagnetic fields (EMF) harmful effects. EMF is evaluated by 50 Hz electric and magnetic fields (EF and MF) values in the framework of working conditions special assessment, and very rarely the analysis of the electromagnetic environment (EME) is carried out in depth. The aim of the study - EME hygienic assessment of power grid EHV facilities personnel workplace with adequate 50 Hz EF and MF levels evaluation as well as the analysis of EF and MF in the frequency range from 5 Hz to 500 Hz amplitude-frequency characteristics. Materials and methods. 50 Hz EF and MF values assessment was carried out on open switchgears (S) of substations and within sanitary breaks of 500 and 750 kV overhead power transmission lines (OTL). Measurements along to OTL trasses was performed using matrix-based method. Measurements and analysis of EF and MF values in 5-500 Hz frequency range amplitude-frequency characteristics were performed in the territory of 500 and 750 kV S. Results. Power frequency 50 Hz measurements results at 500 and 750 kV S ground-level personnel workplaces showed the presence of an excess of permissible limit values by EF intensity and the absence of an excess by MF. The measured EF values within 500 and 750 kV OTL sanitary gaps require limiting the working time of linemen due to the excess of the hygienic norms for full work shift, while the MP levels were almost completely within the standard values for persons not occupationally connected with electrical installations maintenance. MF and EE frequency range from 50 Hz to 500 Hz spectral characteristics analysis showed that 3rd harmonic percentage does not exceed 2.5% for EF and 6% for MF of the main level, the level of the 5th harmonic does not exceed 1% for EF and 3.5% for MF, the level of the 7th harmonic does not exceed 0.2% for EF and 0.8% for MF. These data show despite its low levels the contribution of MF different harmonics in a possible adverse impact on humane than EF corresponding harmonics. Conclusions. There was the confirmation of the previously justified use of the "matrix" scheme for of EF and MF values measurement along OTL routes. The relevance of to EF and MF all frequency components expos ure assessing possible health risk in extremely high voltage S territories and under OTL, based on international recommendations due to the lack of sanitary regulations in the Russian Federation for >50 Hz-30 kHz EF and MF, is shown.


1999 ◽  
Vol 35 (22) ◽  
pp. 1957 ◽  
Author(s):  
G. Ternent ◽  
S. Ferguson ◽  
Z. Borsosfoldi ◽  
K. Elgaid ◽  
T. Lohdi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. P. Vasco ◽  
V. Savona

AbstractWe optimize a silica-encapsulated silicon L3 photonic crystal cavity for ultra-high quality factor by means of a global optimization strategy, where the closest holes surrounding the cavity are varied to minimize out-of-plane losses. We find an optimal value of $$Q_c=4.33\times 10^7$$ Q c = 4.33 × 10 7 , which is predicted to be in the 2 million regime in presence of structural imperfections compatible with state-of-the-art silicon fabrication tolerances.


Sign in / Sign up

Export Citation Format

Share Document