scholarly journals Thermal Mixing Performance of Mixing Structure at Reactor Outlet of HTR-PM under Complex Conditions

Author(s):  
Yang-ping ZHOU ◽  
Xi-ming SUN ◽  
Peng-fei HAO ◽  
Fu LI ◽  
Lei SHI ◽  
...  
2016 ◽  
Vol 306 ◽  
pp. 186-191 ◽  
Author(s):  
Yangping Zhou ◽  
Pengfei Hao ◽  
Fu Li ◽  
Lei Shi ◽  
Feng He ◽  
...  

2021 ◽  
Vol 39 (5) ◽  
pp. 1590-1600
Author(s):  
Md Nuruzzaman ◽  
William Pao ◽  
Faheem Ejaz ◽  
Hamdan Ya

When hot and cold fluids flow through a converging T-junction, rapid temperature fluctuations occur in the mixing region due to the thermal mixing of fluids. This temperature fluctuation causes thermal fatigue, which is responsible for the shortening of service life in a T-junction. Hence, the design of T-junction for thermal mixing requires not only superior mixing performance but minimize thermal fluctuation during mixing is also desirable. The objective of the present paper is to determine the thermal mixing performance at the mixing region of T-junction with two different flow configurations. Water, at different inlet temperatures, is used as a working medium and is assumed incompressible. Two types of flow configurations, namely intersecting and colliding regular T-junction with a sidearm pointing at 12 o’clock position have been evaluated in this paper. Realizable k-epsilon turbulence model was assumed, and its validity benchmarked against RANS and RSM-EB turbulence models. The thermal mixing efficiency of both flow configurations is calculated and compared. The results show that the thermal mixing efficiency of both intersecting and colliding mixing tee increases with the increase of distance and time. Intersecting tee shows higher temperature fluctuation than colliding tee at the mixing outlet, but colliding tee shows higher thermal mixing efficiency than intersecting mixing tee.


Equipment ◽  
2006 ◽  
Author(s):  
M. Hirota ◽  
H. Asano ◽  
H. Nakayama ◽  
T. Asano ◽  
H. Goto ◽  
...  
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 464
Author(s):  
Xingren Jiang ◽  
Ning Yang ◽  
Rijie Wang

Continuous manufacturing has received increasing interest because of the advantages of intrinsic safety and enhanced mass transfer in the pharmaceutical industry. However, the difficulty for scale-up has limited the application of continuous manufacturing for a long time. Recently, the tubular flow reactor equipped with the Kenics static mixer appears to be a solution for the continuous process scale-up. Although many influence factors on the mixing performance in the Kenics static mixer have been investigated, little research has been carried out on the aspect ratio. In this study, we used the coefficient of variation as the mixing evaluation index to investigate the effect of the aspect ratio (0.2–2) on the Kenics static mixer’s mixing performance. The results indicate that a low aspect ratio helps obtain a shorter mixing time and mixer length. This study suggests that adjusting the aspect ratio of the Kenics static mixer can be a new strategy for the scale-up of a continuous process in the pharmaceutical industry.


2021 ◽  
Vol 13 (8) ◽  
pp. 4255
Author(s):  
Mingmin Kong ◽  
Shuaiming Feng ◽  
Qi Xia ◽  
Chen Chen ◽  
Zhouxin Pan ◽  
...  

Hydrogen is of great significance for replacing fossil fuels and reducing carbon dioxide emissions. The application of hydrogen mixing with natural gas in gas network transportation not only improves the utilization rate of hydrogen energy, but also reduces the cost of large-scale updating household or commercial appliance. This paper investigates the necessity of a gas mixing device for adding hydrogen to existing natural gas pipelines in the industrial gas network. A three-dimensional helical static mixer model is developed to simulate the mixing behavior of the gas mixture. In addition, the model is validated with experimental results. Parametric studies are performed to investigate the effect of mixer on the mixing performance including the coefficient of variation (COV) and pressure loss. The research results show that, based on the, the optimum number of mixing units is three. The arrangement of the torsion angle of the mixing unit has a greater impact on the COV. When the torsion angle θ = 120°, the COV has a minimum value of 0.66%, and when the torsion angle θ = 60°, the COV has a maximum value of 8.54%. The distance of the mixing unit has little effect on the pressure loss of the mixed gas but has a greater impact on the COV. Consecutive arrangement of the mixing units (Case A) is the best solution. Increasing the distance of the mixing unit is not effective for the gas mixing effect. Last but not least, the gas mixer is optimized to improve the mixing performance.


Sign in / Sign up

Export Citation Format

Share Document