scholarly journals A Preliminary Numerical Investigation of Thermal Mixing Efficiency in T-Junctions with Different Flow Configurations

2021 ◽  
Vol 39 (5) ◽  
pp. 1590-1600
Author(s):  
Md Nuruzzaman ◽  
William Pao ◽  
Faheem Ejaz ◽  
Hamdan Ya

When hot and cold fluids flow through a converging T-junction, rapid temperature fluctuations occur in the mixing region due to the thermal mixing of fluids. This temperature fluctuation causes thermal fatigue, which is responsible for the shortening of service life in a T-junction. Hence, the design of T-junction for thermal mixing requires not only superior mixing performance but minimize thermal fluctuation during mixing is also desirable. The objective of the present paper is to determine the thermal mixing performance at the mixing region of T-junction with two different flow configurations. Water, at different inlet temperatures, is used as a working medium and is assumed incompressible. Two types of flow configurations, namely intersecting and colliding regular T-junction with a sidearm pointing at 12 o’clock position have been evaluated in this paper. Realizable k-epsilon turbulence model was assumed, and its validity benchmarked against RANS and RSM-EB turbulence models. The thermal mixing efficiency of both flow configurations is calculated and compared. The results show that the thermal mixing efficiency of both intersecting and colliding mixing tee increases with the increase of distance and time. Intersecting tee shows higher temperature fluctuation than colliding tee at the mixing outlet, but colliding tee shows higher thermal mixing efficiency than intersecting mixing tee.

2021 ◽  
pp. 2150049
Author(s):  
SIYUE XIONG ◽  
XUEYE CHEN

In this paper, we mainly study the mixing performance of the micromixer with quartic Koch curve fractal (MQKCF) by numerical simulation. Changing the structure of the microchannel based on the fractal principle can significantly improve the fluid flow state in the microchannel and improve the mixing efficiency of the micromixer. This paper discussed the effects of different fractal deflection angles, microchannel heights and different fractal times on the mixing efficiency under four different Reynolds numbers (Re). It is found that changing the deflection angle of the fractal can bring extremely high benefits, which makes the fluid deflect and fold in the microchannel, enhancing the chaotic convection in the microchannel, and improve the mixing efficiency of the fluid. Under the reasonable arrangement of the quartic Koch curve fractal principle, it can give the micro-mixture more than 99% mixing efficiency. Based on the excellent mixing performance of MQKCF, it also has extremely high application value in the biochemical neighborhood.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 695 ◽  
Author(s):  
Yunxia Wang ◽  
Yong Zhang ◽  
Zheng Qiao ◽  
Wanjun Wang

Homogeneous mixing of microscopic volume fluids at low Reynolds number is of great significance for a wide range of chemical, biological, and medical applications. An efficient jet mixer with arrays of micronozzles was designed and fabricated using additive manufacturing (three-dimensional (3D) printing) technology for applications in centrifugal microfluidic platforms. The contact surface of miscible liquids was enhanced significantly by impinging plumes from two opposite arrays of micronozzles to improve mixing performance. The mixing efficiency was evaluated and compared with the commonly used Y-shaped micromixer. Effective mixing in the jet mixer was achieved within a very short timescale (3s). This 3D printed jet mixer has great potential to be implemented in applications by being incorporated into multifarious 3D printing devices in microfluidic platforms.


Author(s):  
Dominik von Lavante ◽  
Eckart Laurien

With recent progress in high-temperature pebble-bed reactor programs research focus has started to include more ancillary engineering issues. One very important aspect for the realisability is the mixing of hot and colder helium in the reactor lower plenum. Under nominal operating conditions, depending on core design, the temperature of hot gas leaving the core can locally differ up to 210° C. Due to material limitations, these temperature differences have to be reduced to at least ±15° C. Several reduced-size air experiments have been performed on this problem, but their applicability to modern commercially sized reactors is not certain. With the rise in computing power CFD simulations can be performed in addition, but advanced turbulence modeling is necessary due to the highly swirling and turbulent nature of this flow. The presented work uses the geometry of the German HTR-Modul which consists of an annular mixing channel and radially arranged ribs. Using the commercial CFD code ANSYS CFX, we have made detailed analyses of the complex 3D vortical flow phenomena within this geometry. Several momentum transport turbulence models, e.g. the classical k-e model, advanced two-equation models and Reynolds-Stress Models were compared with respect to their accuracy for this particular flow. In addition, the full set of turbulent scalar flux transport equations was implemented for modeling the three components of turbulent transport of enthalpy seperately and were compared with the standard turbulent Prandtl number approach. As expected from previous work in related fields of turbulence modeling, the differences in predicting the mixing performance between models were significant. Only the full Reynolds-Stress model coupled with the scalar flux equations was able to reproduce the experimentally observed reduction of mixing efficiency with increasing Reynolds number. The correct scaling of mixing efficiencies demonstrates that the utilized turbulence models are able to reproduce the physics of the underlying flow. Hence they could be employed for the scaling and optimization of the lower plenum geometry. The results also showed that the original geometry used for the HTR-Modul is insufficient to provide adequate mixing, and that hence a not sufficiently mixed coolant for future reactor designs might be an issue. Based on this work, an optimization for future lower plenum geometries has become feasible.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Irina Stanciu

The geometric layout is the key factor for enhancing the efficiency of the fluid mixing in passive micromixers. Therefore, by adjusting the geometric design and by controlling the geometric parameters, one can enhance the mixing process. However, through any fabrication process, the geometric parameters present slight, inherent variation from the designed values than might affect the performance of the micromixer. This paper proposes a numerical study on the influence of the unavoidable geometric tolerances on the mixing efficiency in passive micromixers. A probabilistic simulation model, based on the Monte Carlo method, is developed and implemented for this purpose. An uncertainty simulation model shows that significant deviations from the deterministic design can appear due to small variations in the geometric parameters values and demonstrates how a more realistic mixing performance can be estimated.


Author(s):  
N. Paya ◽  
T. Dankovic ◽  
A. Feinerman

Mixing is often crucial to the operation of various microfluidic devices. And the most common objective is rapid mixing between two initially segregated fluid streams in a minimal amount of space. In microfluidic flows characterized by incompressibility and low Reynolds number, however, turbulence is almost entirely absent and mixing generally relies on diffusion. Therefore, based on the properties of the fluids involved, it can take impractically long to achieve high mixing efficiency in some cases. To resolve this problem, this paper demonstrates a novel compliant micromixer made of thermoplastic films for lab-on-a-chip applications. The microfluidic mixer utilizes self-rotation effects to achieve high mixing efficiency at Reynolds numbers below 100. In addition, a possible design is suggested for a thermoplastic voltage-actuated micromixer which can lead to even better mixing performance at Reynolds numbers below 1.


1989 ◽  
Author(s):  
Francesco Martelli ◽  
Vittorio Michelassi

An implicit procedure based on the artificial compressibility formulation is presented for the numerical solution of the two-dimensional incompressible steady Navier-Stokes equations in the presence of large separated regions. Turbulence effects are accounted for by the Chien low Reynolds number form of the K-ε turbulence model and the Baldwin-Lomax algebraic expression for turbulent viscosity. The governing equations are written in conservative form and implicitly solved in fully coupled form using the approximate factorization technique. Preliminary tests were carried out in a laminar flow regime to check the accuracy and stability of the method in two-dimensional and cylindrical axisymmetric flow configurations. After testing in laminar and turbulent flow regimes and comparing the two turbulence models, the code was successfully applied to an actual gas turbine diffuser at low Mach numbers.


2011 ◽  
Vol 221 ◽  
pp. 411-417
Author(s):  
Jing Yang ◽  
Bo Jiang

This work aims at the simulation of three-dimensional isothermal flow between a pair of discs in series disc-screw (SDS) extruder by computational fluid dynamics. To analyze the distributive mixing performance and overall efficiency of discs, mixing parameters such as segregation scale and time-average efficiency were calculated. The effects of the disc configuration and the distance between a pair of discs on the distributive mixing were discussed. The more grooves on the disc, the better distributive performance. Good distributive mixing performance can be obtained by big gaps.


Author(s):  
Md. Readul Mahmud

The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2560
Author(s):  
Junhwi So ◽  
Sungyong Joe ◽  
Seonho Hwang ◽  
Soojin Jun ◽  
Seunghyun Lee

The main purpose of cold chain is to keep the temperature of products constant during transportation. The internal temperature of refrigerated truck body is mainly measured with a temperature sensor installed at the hottest point on the body. Hence, the measured temperature cannot represent the overall temperature values of transported products in the body. Moreover, the airflow pattern in the refrigerated body can vary depending on the arrangement of loaded logistics, resulting temperature differences between the transported products. In this study, the airflow and temperature change in the refrigerated body depending on the loading patterns of box were analyzed using experimental and numerical analysis methods. Ten different box loading patterns were applied to the body of 0.5 ton refrigerated truck. The temperatures inside boxes were measured depending on the loading patterns. CFD modeling with two different turbulence models (k-ε and SST k-ω) was developed using COMSOL Multiphysics for predicting the temperatures inside boxes loaded with different patterns, and the predicted data were compared to the experimental data. The k-ε turbulence model showed a higher temperature error than the SST k-ω model; however, the highest temperature point inside the boxes was almost accurately predicted. The developed model derived an approximate temperature distribution in the boxes loaded in the refrigerated body.


Author(s):  
Afaque Shams ◽  
Nicolas Edh ◽  
Kristian Angele

This article reports a CFD-benchmark with the purpose of validating different turbulence modelling approaches for the transient heat transfer due to mixing of hot and cold flow in a T-junction including the wall. This validation exercise has been carried out within the MOTHER project. In the framework of the project, new experiments were performed with a novel measurement sensor allowing the measurements of the fluctuating wall temperature inside the solid pipe wall. The tests were performed for two different Reynolds numbers (Re) 40000 and 60000 and for two different T-junction geometries; a sharp corner and a round corner. The present article reports the synthesis of the CFD validation for a sharp corner T-junction for Re = 40 000. The CFD validation study has been performed using four different CFD softwares, namely STAR-CCM+, Code_Saturne, LESOCC2 and Fluent. In addition, five different turbulence models i.e. wall-function Large Eddy Simulation (LES), Deatched Eddy Simulation (DES), Partially Resolved Numerical Simulation (PRNS), Unsteady Reynolds Averaged Navier-Stokes URANS and RANS were used to perform the CFD computations. The validation exercise has shown that LES gives the best agreement with the experimental data followed by hybrid (LES/RANS), URANS and RANS models, respectively. The velocity and the thermal fields in the fluid region are correctly predicted by the proper use of the LES modelling, whereas, the accurate prediction of the thermal field in the solid requires very long sampling time in order to achieve a statistically converged solution, which of course requires an enormous computational power. Therefore, the statistical convergence of the thermal field in the solid has been found to be a bottleneck in order to accurately predict the temperature fluctuations in the wall. However, measuring the small amplitude temperature fluctuations is also associated with an uncertainty so the disagreement between CFD and measurements (of the order of 10 %) can also be attributed, in part, to uncertainties in the measurements.


Sign in / Sign up

Export Citation Format

Share Document