scholarly journals Influence of Middle Ear Immune Response on the Immunological State and Function of the Inner Ear

1992 ◽  
Vol 102 (2) ◽  
pp. 177???181 ◽  
Author(s):  
B. Gloddek ◽  
Kerstin Lamm ◽  
K. Haslov
1989 ◽  
Vol 98 (12) ◽  
pp. 975-979 ◽  
Author(s):  
Minoru Ikeda ◽  
Claus Morgenstern

Twenty guinea pigs were immunized with horseradish peroxidase (HRP) intradermally and challenged with 5 mg of the same antigen in the tympanic bulla. The appearance of immunoglobulin-producing cells (plasma cells) in the inner ear structure was examined immunohistochemically in frozen sections. Four to 10 days following antigen challenge, 5 of the 20 animals showed significantly increased plasma cells in the subepithelial connective tissue of the endolymphatic sac (ES). Those cells showed positive reactions, mainly with IgG followed by IgM. The cells that reacted positively with IgA were few. Some of these plasma cells were considered to contain the specific antibody against HRP. The results indicate the role of the ES as a local immune response region for the inner ear complex, as well as the existence of an immunologic route from the middle ear cavity to the inner ear, particularly to the ES.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


1997 ◽  
Vol 105 (1-2) ◽  
pp. 65-76 ◽  
Author(s):  
Xiang-Yang Zheng ◽  
Donald Henderson ◽  
Bo-Hua Hu ◽  
Sandra L. McFadden

2016 ◽  
Vol 9 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Upasana Shokal ◽  
Ioannis Eleftherianos

Despite important progress in identifying the molecules that participate in the immune response of Drosophila melanogaster to microbial infections, the involvement of thioester-containing proteins (TEPs) in the antibacterial immunity of the fly is not fully clarified. Previous studies mostly focused on identifying the function of TEP2, TEP3 and TEP6 molecules in the D. melanogaster immune system. Here, we investigated the role of TEP4 in the regulation and function of D. melanogaster host defense against 2 virulent pathogens from the genus Photorhabdus, i.e. the insect pathogenic bacterium Photorhabdus luminescens and the emerging human pathogen P. asymbiotica. We demonstrate that Tep4 is strongly upregulated in adult flies following the injection of Photorhabdus bacteria. We also show that Tep4 loss-of-function mutants are resistant to P. luminescens but not to P. asymbiotica infection. In addition, we find that inactivation of Tep4 results in the upregulation of the Toll and Imd immune pathways, and the downregulation of the Jak/Stat and Jnk pathways upon Photorhabdus infection. We document that loss of Tep4 promotes melanization and phenoloxidase activity in the mutant flies infected with Photorhabdus. Together, these findings generate novel insights into the immune role of TEP4 as a regulator and effector of the D. melanogaster antibacterial immune response.


1999 ◽  
Vol 120 (5) ◽  
pp. 643-648 ◽  
Author(s):  
Michael E. Hoffer ◽  
Ben J. Balough ◽  
Richard D. Kopke ◽  
Jenifer Henderson ◽  
Michael Decicco ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Susanne Vogeler ◽  
Stefano Carboni ◽  
Xiaoxu Li ◽  
Alyssa Joyce

Abstract Background Apoptosis is an important process for an organism’s innate immune system to respond to pathogens, while also allowing for cell differentiation and other essential life functions. Caspases are one of the key protease enzymes involved in the apoptotic process, however there is currently a very limited understanding of bivalve caspase diversity and function. Results In this work, we investigated the presence of caspase homologues using a combination of bioinformatics and phylogenetic analyses. We blasted the Crassostrea gigas genome for caspase homologues and identified 35 potential homologues in the addition to the already cloned 23 bivalve caspases. As such, we present information about the phylogenetic relationship of all identified bivalve caspases in relation to their homology to well-established vertebrate and invertebrate caspases. Our results reveal unexpected novelty and complexity in the bivalve caspase family. Notably, we were unable to identify direct homologues to the initiator caspase-9, a key-caspase in the vertebrate apoptotic pathway, inflammatory caspases (caspase-1, − 4 or − 5) or executioner caspases-3, − 6, − 7. We also explored the fact that bivalves appear to possess several unique homologues to the initiator caspase groups − 2 and − 8. Large expansions of caspase-3 like homologues (caspase-3A-C), caspase-3/7 group and caspase-3/7-like homologues were also identified, suggesting unusual roles of caspases with direct implications for our understanding of immune response in relation to common bivalve diseases. Furthermore, we assessed the gene expression of two initiator (Cg2A, Cg8B) and four executioner caspases (Cg3A, Cg3B, Cg3C, Cg3/7) in C. gigas late-larval development and during metamorphosis, indicating that caspase expression varies across the different developmental stages. Conclusion Our analysis provides the first overview of caspases across different bivalve species with essential new insights into caspase diversity, knowledge that can be used for further investigations into immune response to pathogens or regulation of developmental processes.


Sign in / Sign up

Export Citation Format

Share Document