scholarly journals Emission control devices, fuel additive, and fuel composition changes.

1977 ◽  
Vol 19 ◽  
pp. 309-316 ◽  
Author(s):  
W T Piver
2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


2017 ◽  
Vol 7 (01) ◽  
pp. 39 ◽  
Author(s):  
Yusup Setiawan

Steam and electricity needs in the paper industry have been provided itself through coal-fired boiler equipped with emission control devices. Boiler flue gas emissions of coal combustion products contain contaminants such as particulate emissions , NO2 and SO2 , and a small amount of emissions of mercury (Hg). Valuation on boiler emissions quality associated with air emissions control systems and emissions standard has been carried out. Estimation of mercury concentration in air emissions of boiler flue gas in the paper industry has also been conducted. The valuation on the air emissions quality of non-mercury parameters of paper industry boilers has also been done based on national emissions standards. The results of the valuation indicated that the current applied of flue gas emissions control devices in the paper industry has been optimally operated so that the emission quality of boiler for both non-mercury parameters and mercury parameters has been complied with the emission quality standards. Prediction of mercury content in air emissions of a coal boiler stack of paper industry that is discharged into environment based on the content of mercury in coal is 0.0205 mg/Nm3 (20.5 µg/Nm3 ) maximum. Paper industry needs to consider the application of co-benefit technology when mercury is used as a quality standard emissions parameter. ABSTRAKKebutuhan uap dan atau listrik pada industri kertas disediakan melalui unit boiler berbahan bakar batu bara yang dilengkapi alat pengendali emisi. Emisi gas boiler mengandung pencemar berupa partikulat, NO2 dan SO2 , dan merkuri (Hg). Valuasi kualitas emisi boiler berkaitan dengan sistem pengendalian emisi udara dan baku mutu emisi telah dilakukan, Estimasi kadar merkuri di udara emisi cerobong boiler pada industri kertas juga telah dilakukan. Valuasi kualitas emisi udara non-merkuri emisi boiler industri kertas juga telah dilakukan berdasarkan baku mutu emisi nasional. Hasil valuasi menunjukkan bahwa alat pengendali emisi gas buang boiler yang telah diterapkan saat ini pada industri kertas telah dioperasikan secara optimal sehingga kualitas emisi boiler baik untuk parameter non-merkuri maupun untuk parameter merkuri telah memenuhi baku mutu emisi. Prediksi kadar merkuri dalam udara emisi cerobong boiler batu bara industri kertas yang dibuang ke lingkungan dihitung berdasarkan kadar merkuri dalam batu bara adalah maksimum sebesar 0,0205 mg/Nm3 (20,5 µg/Nm3 ). Industri kertas perlu mempertimbangkan penerapan teknologi co-benefit bilamana suatu saat parameter merkuri ditetapkan sebagai parameter baku mutu emisi.


2021 ◽  
Vol 9 (10) ◽  
pp. 1061
Author(s):  
Kyeong-Ju Kong

Emission control devices such as selective catalytic reduction (SCR), exhaust gas recirculation (EGR), and scrubbers were installed in the compression ignition (CI) engine, and flow analysis of intake air and exhaust gas was required to predict the performance of the CI engine and emission control devices. In order to analyze such gas flow, it was inefficient to comprehensively analyze the engine’s cylinder and intake/exhaust systems because it takes a lot of computation time. Therefore, there is a need for a method that can quickly calculate the gas flow of the CI engine in order to shorten the development process of emission control devices. It can be efficient and quickly calculated if only the parts that require detailed observation among the intake/exhaust gas flow of the CI engine are analyzed in a 3D approach and the rest are analyzed in a 1D approach. In this study, an algorithm for gas flow analysis was developed by coupling 1D and 3D in the valve systems and comparing with experimental results for validation. Analyzing the intake/exhaust gas flow of the CI engine in a 3D approach took about 7 days for computation, but using the developed 1D–3D coupling algorithm, it could be computed within 30 min. Compared with the experimental results, the exhaust pipe pressure occurred an error within 1.80%, confirming the accuracy and it was possible to observe the detailed flow by showing the contour results for the part analyzed in the 3D zone. As a result, it was possible to accurately and quickly calculate the gas flow of the CI engine using the 1D–3D coupling algorithm applied to the valve system, and it was expected that it can be used to shorten the process for analyzing emission control devices, including predicting the performance of the CI engine.


Author(s):  
Nor Farida Harun ◽  
David Tucker ◽  
Thomas A. Adams

The dynamic behavior of a solid oxide fuel cell gas turbine hybrid system (SOFC/GT) from both open and closed loop transients in response to sudden changes in fuel composition was experimentally investigated. A pilot-scale (200–700 kW) hybrid facility available at the U.S. Department of Energy, National Energy Technology Laboratory was used to perform the experiments using a combination of numerical models and actual equipment. In the open loop configuration, the turbine speed was driven by the thermal effluent fed into the gas turbine system, where the thermal effluent was determined by the feedforward fuel cell control system. However, in the closed loop configuration, a load-based speed control system was used to maintain the turbine speed constant at 40,500 rpm by adjusting the load on the turbine, in addition to the implementation of the fuel cell system control. The open loop transient response showed that the impacts of fuel composition changes on key process variables, such as fuel cell thermal effluent, turbine speed, and cathode feed stream conditions, in the SOFC/GT systems were propagated over the course of the test, except for the cathode inlet temperature. The trajectories of the aforementioned variables are discussed in this paper to better understand the resulting mitigation/propagation behaviors. This will help lead to the development of novel control strategies to mitigate the negative impacts experienced during fuel composition transients of SOFC/GT systems.


2014 ◽  
Vol 14 (6) ◽  
pp. 7917-7963
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total primary particulate matter (PM), PM10, and PM2.5 are estimated to decline 7%, 20%, 41%, 34%, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and partial implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17% (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12% and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants and taking account of more diverse environmental impacts is also urgently needed.


1977 ◽  
Vol 63 (5) ◽  
pp. 724-735 ◽  
Author(s):  
Satoshi KADO ◽  
Taketomo YAMAZAKI ◽  
Mikio YAMANAKA ◽  
Kotaro YOSHIDA ◽  
Katsuhiko YABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document