scholarly journals 1D–3D Coupling Algorithm of Gas Flow for the Valve System in a Compression Ignition Engine

2021 ◽  
Vol 9 (10) ◽  
pp. 1061
Author(s):  
Kyeong-Ju Kong

Emission control devices such as selective catalytic reduction (SCR), exhaust gas recirculation (EGR), and scrubbers were installed in the compression ignition (CI) engine, and flow analysis of intake air and exhaust gas was required to predict the performance of the CI engine and emission control devices. In order to analyze such gas flow, it was inefficient to comprehensively analyze the engine’s cylinder and intake/exhaust systems because it takes a lot of computation time. Therefore, there is a need for a method that can quickly calculate the gas flow of the CI engine in order to shorten the development process of emission control devices. It can be efficient and quickly calculated if only the parts that require detailed observation among the intake/exhaust gas flow of the CI engine are analyzed in a 3D approach and the rest are analyzed in a 1D approach. In this study, an algorithm for gas flow analysis was developed by coupling 1D and 3D in the valve systems and comparing with experimental results for validation. Analyzing the intake/exhaust gas flow of the CI engine in a 3D approach took about 7 days for computation, but using the developed 1D–3D coupling algorithm, it could be computed within 30 min. Compared with the experimental results, the exhaust pipe pressure occurred an error within 1.80%, confirming the accuracy and it was possible to observe the detailed flow by showing the contour results for the part analyzed in the 3D zone. As a result, it was possible to accurately and quickly calculate the gas flow of the CI engine using the 1D–3D coupling algorithm applied to the valve system, and it was expected that it can be used to shorten the process for analyzing emission control devices, including predicting the performance of the CI engine.

Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 239
Author(s):  
Kyeong-Ju Kong

It is necessary to analyze the intake/exhaust gas flow of a diesel engine when turbocharger matching and when installing emission control devices such as exhaust gas recirculation (EGR), selective catalytic reduction (SCR), and scrubbers. Analyzing the intake/exhaust gas flow using a 3D approach can use various analytical models, but it requires a significant amount of time to perform the computation. An approach that combines 1D and 3D is a fast numerical analysis method that can utilize the analysis models of the 3D approach and obtain accurate calculation results. In this study, the flow characteristics of the exhaust gas were analyzed using a 1D–3D coupling algorithm to analyze the unsteady gas flow of a diesel engine, and whether the 1D–3D approach was suitable for analyzing exhaust systems was evaluated. The accuracy of the numerical analysis results was verified by comparison with the experimental results, and the flow characteristics of various shapes of the exhaust system of a diesel engine could be analyzed. Numerical analysis using the 1D–3D approach was able to be computed about 300 times faster than the 3D approach, and it was a method that could be used for research focused on the exhaust system. In addition, since it could quickly and accurately calculate intake/exhaust gas flow, it was expected to be used as a numerical analysis method suitable for analyzing the interaction of diesel engines with emission control devices and turbochargers.


2021 ◽  
Vol 9 (5) ◽  
pp. 553
Author(s):  
Kyong-Hyon Kim ◽  
Kyeong-Ju Kong

Devices for reducing environmental pollutant emissions are being installed in ship compression ignition (CI) engines; alternatively, the designs of intake and exhaust pipes and ports are being modified to tune the performance according to the user’s needs. In both cases, substantial computation time and cost are required to simulate the gas flow of the CI engine with an air-intake system. In order to simulate the air-intake system of the CI engine, which changes according to the user’s needs, at a low cost and in a short time, we aimed to analyze the gas flow using a 1D–3D coupled method. The 1D zone was analyzed using the method of characteristics, and the 3D zone was analyzed using the commercial computational fluid dynamics (CFD) code Ansys Fluent R15.0, whereas their coupling was achieved by applying the developed 1D–3D coupling algorithm to Ansys Fluent R15.0 using user-defined functions (UDFs). In the comparison of the pressure of the intake pipe with the experimental result, the average error was 0.58%, thereby validating the approach. In addition, when analyzing the intake pipe and port in a 3D zone, the results of the velocity and pressure were expressed as contours, allowing them to be visualized. It is expected that the 1D–3D coupling algorithm of the air-intake system can be used to reflect the user’s needs and can be used as a method to quickly and accurately calculate the gas flow within tens of minutes.


Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


2010 ◽  
Vol 151 (3-4) ◽  
pp. 278-284 ◽  
Author(s):  
James E. Parks ◽  
Vitaly Prikhodko ◽  
John M.E. Storey ◽  
Teresa L. Barone ◽  
Samuel A. Lewis ◽  
...  

2019 ◽  
Vol 33 (9) ◽  
pp. 4521-4528
Author(s):  
Kyeong-Ju Kong ◽  
Suk-Ho Jung ◽  
Tae-Young Jeong ◽  
Dae-Kwon Koh

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


2021 ◽  
Vol 11 (2) ◽  
pp. 682
Author(s):  
Gabriele Seitz ◽  
Farid Mohammadi ◽  
Holger Class

Calcium oxide/Calcium hydroxide can be utilized as a reaction system for thermochemical heat storage. It features a high storage capacity, is cheap, and does not involve major environmental concerns. Operationally, different fixed-bed reactor concepts can be distinguished; direct reactor are characterized by gas flow through the reactive bulk material, while in indirect reactors, the heat-carrying gas flow is separated from the bulk material. This study puts a focus on the indirectly operated fixed-bed reactor setup. The fluxes of the reaction fluid and the heat-carrying flow are decoupled in order to overcome limitations due to heat conduction in the reactive bulk material. The fixed bed represents a porous medium where Darcy-type flow conditions can be assumed. Here, a numerical model for such a reactor concept is presented, which has been implemented in the software DuMux. An attempt to calibrate and validate it with experimental results from the literature is discussed in detail. This allows for the identification of a deficient insulation of the experimental setup. Accordingly, heat-loss mechanisms are included in the model. However, it can be shown that heat losses alone are not sufficient to explain the experimental results. It is evident that another effect plays a role here. Using Bayesian inference, this effect is identified as the reaction rate decreasing with progressing conversion of reactive material. The calibrated model reveals that more heat is lost over the reactor surface than transported in the heat transfer channel, which causes a considerable speed-up of the discharge reaction. An observed deceleration of the reaction rate at progressed conversion is attributed to the presence of agglomerates of the bulk material in the fixed bed. This retardation is represented phenomenologically by mofifying the reaction kinetics. After the calibration, the model is validated with a second set of experimental results. To speed up the calculations for the calibration, the numerical model is replaced by a surrogate model based on Polynomial Chaos Expansion and Principal Component Analysis.


Sign in / Sign up

Export Citation Format

Share Document