scholarly journals Conception of Hollow Axles Forming by Skew Rolling with Moving Mandrel

2021 ◽  
Vol 15 (3) ◽  
pp. 146-154
Author(s):  
Zbigniew Pater ◽  
Patrycja Walczuk-Gągała
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 764
Author(s):  
Jarosław Bartnicki ◽  
Yingxiang Xia ◽  
Xuedao Shu

The paper presents chosen aspects of the skew rolling process of hollow stepped products with the use of a skew rolling mill designed and manufactured at the Lublin University of Technology. This machine is characterized by the numerical control of spacing between the working rolls and the sequence of the gripper axial movement, which allows for the individual programming of the obtained shapes of parts such as stepped axles and shafts. The length of these zones and the values of possibly realizable cross-section reduction and obtained outlines are the subject of this research paper. The chosen results regarding the influence of the technological parameters used on the course of the process are shown in the present study. Numerical modelling using the finite element method in Simufact Forming, as well as the results of experimental tests performed in a skew rolling mill, were applied in the conducted research. The work takes into account the influence of cross-section reduction of the hollow parts and the feed rate per rotation on the metal flow mechanisms in the skew rolling process. The presented results concern the obtained dimensional deviations and changes in the wall thickness determining the proper choice of technological parameters for hollow parts formed by the skew rolling method. Knowledge about the cause of the occurrence of these limitations is very important for the development of this technology and the choice of the process parameters.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2125 ◽  
Author(s):  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak

This paper presents selected numerical and experimental results of a skew rolling process for producing balls using helical tools. The study investigates the effect of the billet’s initial temperature on the quality of produced balls and the rolling process itself. In addition, the effect of billet diameter on the quality of produced balls is investigated. Experimental tests were performed using a helical rolling mill available at the Lublin University of Technology. The experiments consisted of rolling 40 mm diameter balls with the use of two helical tools. To determine optimal rolling parameters ensuring the highest quality of produced balls, numerical modelling was performed using the finite element method in the Forge software. The numerical analysis involved the determination of metal flow kinematics, temperature and damage criterion distributions, as well as the measurement of variations in the force parameters. The results demonstrate that the highest quality balls are produced from billet preheated to approximately 1000 °C.


2011 ◽  
Vol 40 (11) ◽  
pp. 945-948 ◽  
Author(s):  
V. P. Romanenko ◽  
D. V. Sizov
Keyword(s):  

2016 ◽  
Vol 716 ◽  
pp. 864-870
Author(s):  
Andrzej Stefanik ◽  
Piotr Szota ◽  
Sebastian Mróz ◽  
Teresa Bajor ◽  
Sonia Boczkal

This paper presents the research results of the microstructure changes of the round rods of AZ31 magnesium alloy in the hot rolling processes. The rolling was conducted in duo mill and a three-high skew rolling mill. Numerical modelling of the AZ31 magnesium alloy round rods rolling process was conducted using a computer program Forge 2011®. The verification of the results of numerical modelling was carried out during laboratory tests in a two-high rolling mill D150 and a three-high skew rolling mill RSP 40/14. Distributions of the total effective strain and temperature during AZ31 rods rolling process were determined on the basis of the theoretical analysis. Microstructure and texture changes during both analysed processes were studied.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7126
Author(s):  
Łukasz Wójcik ◽  
Zbigniew Pater ◽  
Tomasz Bulzak ◽  
Janusz Tomczak ◽  
Konrad Lis

The article presents the results of model tests with which a comparative analysis of two methods of ball separation during the skew rolling process was carried out. A verification of the results obtained in the physical modelling process with the results obtained in the real process of skew ball rolling was also carried out. During the physical modelling, the effect of changing the ball separation method on the quality of the products obtained, variations in maximum torque values and maximum radial forces were analyzed. In the case of real tests, the results were verified with the results of physical modelling, in which the surface quality and torque values for one of the tool sets were compared. Physical modelling was used to verify the differences between the two methods of ball separation. Commercial plasticine based on synthetic wax from the manufacturer PRIMO was used as a model material for physical analysis. The plasticine used for testing was cooled to 0 °C and the cooling process took 24 h. The tools used for the physical modelling were 3D printed and the material used was ABS. The method of physical modelling using plasticine as a model material allows for a correct analysis of hot metal forming processes.


2016 ◽  
Vol 113 (3) ◽  
pp. 307 ◽  
Author(s):  
Chunjiang Zhao ◽  
Yongfeng Liu ◽  
Lei Bai ◽  
Nan Wang ◽  
Xin Gao ◽  
...  

Author(s):  
Jitai Wang ◽  
Xuedao Shu ◽  
Song Zhang ◽  
Shuxin Li ◽  
Zbigniew Pater ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2970 ◽  
Author(s):  
Tomczak ◽  
Pater ◽  
Bulzak

This paper presents the results of theoretical and experimental investigations of a new process of rolling rods from scrap rail heads. First, the industrial applications of scrap railway rails and methods of their recycling are discussed, and then the concept of two-stage rolling of rods from heads cut off from scrap rails is proposed. In the first stage of the process, a rail head preform was rolled in a hexagonal pass of a longitudinal rolling mill. Then in the second stage, the hexagonal bar was skew rolled into a rod in a helical roll pass. Theoretical considerations were based on finite element numerical modelling. The rolling process was simulated under 3D deformation using Forge NxT v.1.1 software developed by Transvalor Company. Calculations were carried out to determine the material flow kinematics, strength, and thermal parameters of the process and to identify the phenomena that might constrain its implementation. The numerical results were verified in experimental tests, during which preforms and rods were formed from scrap rail heads. The tests were conducted in longitudinal and skew rolling mills. The results indicate that rods can be effectively formed from scrap rail heads in just two steps. Rods obtained using the proposed method can be used as full-featured, semifinished products for the manufacture of various types of machine parts.


2009 ◽  
Vol 419-420 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Min Shi ◽  
Bao Jian Wang ◽  
Zhen Hua Li

The optimization of pass parameters is an important step in skew rolling design. In order to meet the demands of secondary refining process in continuous casting, on the basis of the practical experience of two-groove skew rolling for steel ball, and by means of the theory of two-groove skew rolling design ,the optimization of two-groove pass parameter for Φ21.6 mm Aluminum ball, a kind of additive in secondary refining process, is realized. The optimized pass parameters are used in the rolling die design, and the corresponding experiments indicate that the projects of optimized pass parameters are feasible, and the efficiency of two-groove skew rolling is twice as large as that of one-groove.


Sign in / Sign up

Export Citation Format

Share Document