scholarly journals A mathematical model for the spread of oil spills in high seas

Author(s):  
Bambang Hendriya Guswanto ◽  
Kiran Nirmala Achfasarty ◽  
Ari Wardayani

This study aims to model the distribution pattern of oil spills in high seas with the influence of wind movements. The mathematical model is derived from the random walk process of the oil spill particles by using a probability measure on a unit circle with the help of Laplace and Fourier transform . The solution to the model is also obtained by using Laplace and the Fourier transform. Based on the analysis of the solution of the model, the oil spill tends to spread in the direction of wind movement.. The speed and direction of the wind movement affect the speed and direction of the spread of the oil spill particles. The larger the speed of wind movement, the faster the oil particles movement.

2020 ◽  
Vol 168 ◽  
pp. 00056
Author(s):  
Vitalii Monastyrskyi ◽  
Serhii Monastyrskyi ◽  
Denis Nomerovskyi ◽  
Borys Mostovyi

To find possible conveyor failures at the design stage means to determine a transverse belt displacement and compare the obtained data with the permissible ones. The dynamic problem of the belt movement on the conveyor has been defined. Resistance and external forces, limits of the belt displacement have been determined. The transverse belt displacement can be described by partial differential equations. To solve the problem, the Fourier transform has been used. Change patterns in the transverse belt conveyor displacement dependent on conveyor’s parameters, type of load, and skewing of the idlers along the conveyor have been obtained. The results agree with experimental data. The method of adaptive control of the transverse belt displacement has been described. The essence of this method is to adapt the model of the moving belt in the conveying trough to changed conditions and to reveal the uncertainty of the control with the known parameters of the mathematical model.


2019 ◽  
Vol 396 ◽  
pp. 109-120 ◽  
Author(s):  
Caroline Barbosa Monteiro ◽  
Phelype Haron Oleinik ◽  
Bruno Vasconcellos Lopes ◽  
Thalita Fagundes Leal ◽  
Osmar Olinto Möller Junior ◽  
...  

A modelling system was utilised to simulate the movement and behaviour of oil slicks for two types of hydrocarbons, a diesel and another residual, considering hydrodynamic variations. Susceptible areas to oil touching were found in adjacent regions of two vessel manoeuvring zones, in two types of zones, one in a marine coastal and another in an estuarine environment. The evaporation rates were calculated for an estimate of the mass losses. For the maritime zone, the oil particles reached the vicinity of the beaches in approximately 4 to 8 hours after the beginning of the spill simulations, while for the estuary in approximately 1 hour. For the scenarios with diesel oil, mass losses oscillated between 13 to 16% in the estuarine region, and between 23 and 29% in the marine coastal zones. The evaporation rates for scenarios with residual oil, between 2 and 5%, were considerably lower than for diesel (15 and 22%), especially for spills simulated in the estuarine region, where the oil particles reached the lagoon banks after 1 hour. Mass losses by evaporation were more intense in marine coastal areas than for oil spills simulated in estuarine regions, possibly due to the more intense hydrodynamic conditions and the longer time that the oil needs to reach the coast. The fluctuations of observed environmental conditions justify the need for a robust number of simulations for reducing the uncertainties related to the oceanographic and meteorological variability that affect oil spill movement.


2020 ◽  
Vol 27 (4) ◽  
pp. 31-46
Author(s):  
Vancuong Do ◽  
Hongxiang Ren

Fluid simulation is one of the most complex tasks in three-dimensional simulation. Specifically, in the case of oil spills at sea, the oil film constantly interacts and is influenced by the environment, thus making its composition and properties change over time. In this paper, we tackle this problem by using both Lehr's spreading model and Hoult's drifting model to build the oil spill physical model. Unlike previous studies that only applied the Poisson disk algorithm to static and solid objects, we applied it in a three-dimensional space to divide the oil film into fluid particles. The track of oil particles under the influence of waves, wind, and currents is rendered by the Unity3D tool with C# programming language, which vividly and realistically simulates the collision of oil particles on the ocean scene with obstacles such as buoys and small islands. The result of this research can be used to predict oil spill direction, thus providing the solution to respond and minimize the damage caused by oil spills at sea. We also discuss some improvements to our model by using the Marching cube algorithm to render the Metaball model.


2012 ◽  
Vol 1 (33) ◽  
pp. 33 ◽  
Author(s):  
Jinhua Wang ◽  
Jinshan Zhang

A three–dimensional integrated model is developed for simulating oil spills transport and fate in seas. The model contains two main modules, flow and transport-fate module. The transport module uses an unstructured finite volume wave-current coupling model, giving a more accurate result compared to structured model, especially for a region has a complex coastline. In the transport-fate module the oil dispersion is solved using a particle-tracking method. Horizontal diffusion is simulated using a random walk techniques in a Monte Carlo framework while vertical diffusion process is solved based on the Langeven equation. The model simulates the most significant processes which affect the motion of oil particles, such as: advection, surface spreading, evaporation, dissolution, emulsification, and turbulent diffusion, the interaction of the oil particles with the shoreline, sedimentation and the temporal variations of oil viscosity, density, and surface-tension. This model has been applied to simulate the oil spill accident at the strait of Bohai Sea. In comparison with the observations, the numerical results indicate that the model is reasonably accurate.


1979 ◽  
Vol 1979 (1) ◽  
pp. 247-251
Author(s):  
I. C. White ◽  
J. A. Nichols ◽  
M. J. Garnett

ABSTRACT The aim of this paper is to illustrate, by reference to our experience gained from attendance on-site at major oil spills around the world, that the capability to combat oil on the high seas has improved little over the past ten years. Too often this failure has resulted in considerable areas of shoreline being severely oiled, damage being caused to areas of ecological, fishery, or amenity importance and has necessitated expensive clean-up measures being adopted that have on occasions been more damaging than the oil itself. The response options available for dealing with oil spills and their limitations are discussed and the importance of a thorough and rapid evaluation to ensure that the response adopted is appropriate to the particular circumstances of the incident is emphasised. Also stressed is the necessity for good contingency planning, organisation and control.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 301-306 ◽  
Author(s):  
U. Zimmer ◽  
W. F. Geiger

Infiltration and retention of rain water are used to reduce the runoff peaks in the sewerage system and in the receiving waters. At the University of Essen the efficiency of green roofs and porous pavements has been investigated. A mathematical model has been applied which allows a fast simulation for the runoff and respectively for the seepage. For linear systems the Fourier transform allows the calculation of transfer functions from measured data.


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


Sign in / Sign up

Export Citation Format

Share Document