scholarly journals Use of distribution models in the conservation of a Mexican endemic lagomorph

Therya ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 571-582
Author(s):  
Luis José Aguirre López ◽  
Tania Escalante

The volcano rabbit (Romerolagus diazi), endemic to the central-eastern Transmexican Volcanic Belt, is one of the most threatened lagomorphs worldwide.  Several factors threaten to decrease its geographical distribution, which is already restricted to the Pelado, Tláloc, Iztaccíhuatl, and Popocatépetl volcanoes.  Our study aimed to propose priority areas for the conservation of this rabbit within Iztaccíhuatl-Popocatépetl National Park (IPNP) based on species distribution models.  Volcano rabbit presence data were collected through different field sampling techniques and public and private databases.  The environmental predictors used to model suitability were obtained from both open-access remote sensors and topographic information.  The models’ performance was adjusted by evaluating different sets of variables and data to improve the certainty of the results.  We obtained an area of 132.5 km2 within the IPNP potentially occupied by the volcano rabbit and a high suitability area of 7 km2.  In addition, four priority conservation polygons for the volcano rabbit were identified within the National Park.  We showed that the suitability and potential distribution are not uniform in the park, being the alpine meadow dominated by Muhlenbergia sp., the most suitable area for R. diazi.  Therefore, the conservation strategies should focus on preserving these meadows in the prioritized polygons, avoiding tourist and unskilled personnel’s access.  This work represents a contribution to the conservation of the volcano rabbit and a theoretical and practical tool for use in the IPNP.

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 168
Author(s):  
Xueqin Liu ◽  
Hui Wang ◽  
Dahan He ◽  
Xinpu Wang ◽  
Ming Bai

Beetles are key insect species in global biodiversity and play a significant role in steppe ecosystems. In the temperate steppe of China, the increasing degeneration of the grasslands threatens beetle species and their habitat. Using Generalized Additive Models (GAMs), we aimed to predict and map beetle richness patterns within the temperate steppe of Ningxia (China). We tested 19 environmental predictors including climate, topography, soil moisture and space as well as vegetation. Climatic variables (temperature, precipitation, soil temperature) consistently appeared among the most important predictors for beetle groups modeled. GAM generated predictive cartography for the study area. Our models explained a significant percentage of the variation in carabid beetle richness (79.8%), carabid beetle richness distribution seems to be mainly influenced by temperature and precipitation. The results have important implications for management and conservation strategies and also provides evidence for assessing and making predictions of beetle diversity across the steppe.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


2021 ◽  
Vol 6 (1) ◽  
pp. 58612
Author(s):  
Silvi Dwi Anasari ◽  
Wulan Pusparini ◽  
Noviar Andayani

The distribution of a species can help guide the protection activities in their natural habitat. Conversely, the lack of information on this distribution makes the protection strategy of this species difficult. The research was conducted in Way Canguk Research Station, Bukit Barisan Selatan National Park from January until March 2018. The purposes of this research were to create a distribution prediction map of Sunda pangolin (Manis javanica) and estimating the environment variables that most influenced the probability of the distribution. Fourteen points of camera trap coordinates were used for presence data with nine types of environment variables such as elevation, slope, understorey, canopy cover, distance from roads, distance from rivers, distance from villages, food source, and distance from the threat. The result of maxent showed an Area Under the Curve (AUC) value of 0.909 categorized as very good. The highest probability of Sunda pangolin distributions was in the Pemerihan Resort and Way Haru Resort area, while the dominant environmental variables included the distance from the village, the canopy cover, and the distance from threat with the value 47.7; 25.85; and 15.8%, respectively. Prediction maps and environment variables can help to identify the population of Sunda pangolin in the wild and can provide input for the national parks to prioritize protection areas for Sunda pangolin from the increased poaching.


Zootaxa ◽  
2017 ◽  
Vol 4358 (2) ◽  
pp. 271 ◽  
Author(s):  
VIRIDIANA LIZARDO ◽  
FEDERICO ESCOBAR ◽  
OCTAVIO ROJAS-SOTO

In this study, we systematized available distribution data, obtained from biological databases and relevant literature, for Mexican species belonging to the tribe Phanaeini. The main objectives were to provide an overall description of the distribution records in biological collections, to detect potential sampling biases, to describe the seasonality of collections and to obtain species distribution models using the Desktop GARP algorithm. A total of 5,562 records, corresponding to 32 species in Mexico, were compiled, including the recently described Phanaeus zoque Moctezuma & Halffter, 2017. This compilation includes 784 unique collection records at 325 localities. These records were mainly distributed along the Trans-Mexican Volcanic Belt, the Sierra Madre Oriental and Sierra Madre Occidental mountain ranges and throughout the states of Chiapas and Veracruz. The Mexican High Plateau, the state of Tlaxcala and the Yucatan Peninsula are lacking in records. Distribution maps were created for species of three genera (Phanaeus MacLeay, 1819, Coprophanaeus Olsoufieff, 1924, and Sulcophanaeus Olsoufieff, 1924) and for 29 species present in Mexico. These species distributions are largely delimited by geomorphological features and vegetation types and coincide with expert descriptions of this tribe; some species show expanded distribution ranges. These maps provide a starting point for further analyses, the planning of future field studies, and the verification of possible new species in the Mexican territory. 


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6307 ◽  
Author(s):  
Tahneal Hawke ◽  
Hayley Bates ◽  
Suzanne Hand ◽  
Michael Archer ◽  
Linda Broome

BackgroundThe Mountain Pygmy-possum (Burramys parvus) is a critically endangered marsupial, endemic to alpine regions of southern Australia. We investigated the diet of a recently discovered population of the possum in northern Kosciuszko National Park, NSW, Australia. This new population occurs at elevations well below the once-presumed lower elevation limit of 1,600 m.Goals and MethodsFaecal material was analysed to determine if dietary composition differed between individuals in the newly discovered northern population and those in the higher elevation southern population, and to examine how diet was influenced by rainfall in the southern population and seasonal changes in resource availability in the northern population.Results and DiscussionThe diet ofB. parvusin the northern population comprised of arthropods, fruits and seeds. Results indicate the diet of both populations shares most of the same invertebrate orders and plant species. However, in the absence of preferred food types available to the southern population, individuals of the northern population opportunistically consumed different species that were similar to those preferred by individuals in higher altitude populations. Differing rainfall amounts had a significant effect on diet, with years of below average rainfall having a greater percentage composition and diversity of invertebrates. Seasonal variation was also recorded, with the northern population increasing the diversity of invertebrates in their diet during the Autumn months when Bogong Moths (Agrotis infusa) were absent from those sites, raising questions about the possum’s dependence on the speciesConclusionsMeasurable effects of rainfall amount and seasonal variation on the dietary composition suggest that predicted climatic variability will have a significant impact on its diet, potentially impacting its future survival. Findings suggest that it is likely thatB. parvusis not restricted by dietary requirements to its current pattern of distribution. This new understanding needs to be considered when formulating future conservation strategies for this critically endangered species.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Stefania Zanet ◽  
Ezio Ferroglio ◽  
Elena Battisti ◽  
Paolo Tizzani

Tick-borne diseases and especially protozoa of the genus Babesia, are gaining increasing attention as emerging zoonotic pathogens. Zoonotic species like B. venatorum and B. microti have wild animals as main reservoir hosts. We propose a habitat suitability model for Babesia spp., as tool for institutions and policy makes to better understand the entity of Babesia presence, to improve diagnostic awareness and to optimize screening and preventive actions. The probability of presence of Babesia spp. was estimated using as presence data, wild ruminants positive by PCR to Babesia spp. which were correlated to environmental factors that can favor or limit vector and host availability. We developed three separate models to discriminate the different roles of Red deer and Roe deer and Alpine chamois in Babesia spp. epidemiology. A comprehensive model using all presence data from all ungulates species  was also developed. The overall suitable area for Babesia spp. in this simulation is of 3723 km2, which correspond to 15.51% of the background regional territory. The model developed was empirically validated assessing tick abundance in randomly chosen areas classified by the model as moderately or highly suitable for Babesia spp. Collected ticks were tested by PCR for Babesia spp. to confirm model predictions as infection prevalence with Babesia spp. was significantly higher in areas predicted as highly suitable compared to those classified by the model as moderately suitable for Babesia spp.  (X2=5.05 p<0.05, Odds Ratio OR= 2.12 CI95% 1.1-4.1).


AI Magazine ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 19-30 ◽  
Author(s):  
Daniel Fink ◽  
Theodoros Damoulas ◽  
Nicholas E. Bruns ◽  
Frank A. La Sorte  ◽  
Wesley M. Hochachka  ◽  
...  

Ecological systems are inherently complex. The processes that affect the distributions of animals and plants operate at multiple spatial and temporal scales, presenting a unique challenge for the development and coordination of effective conservation strategies, particularly for wide-ranging species. In order to study ecological systems across scales, data must be collected at fine resolutions across broad spatial and temporal extents. Crowdsourcing has emerged as an efficient way to gather these data by engaging large numbers of people to record observations. However, data gathered by crowdsourced projects are often biased due to the opportunistic approach of data collection. In this article, we propose a general class of models called AdaSTEM, (for adaptive spatio-temporal exploratory models), that are designed to meet these challenges by adapting to multiple scales while exploiting variation in data density common with crowdsourced data. To illustrate the use of AdaSTEM, we produce intra-seasonal distribution estimates of long-distance migrations across the Western Hemisphere using data from eBird, a citizen science project that utilizes volunteers to collect observations of birds. Subsequently, model diagnostics are used to quantify and visualize the scale and quality of distribution estimates. This analysis shows how AdaSTEM can automatically adapt to complex spatiotemporal processes across a range of scales, thus providing essential information for full-life cycle conservation planning of broadly distributed species, communities, and ecosystems.


2014 ◽  
Vol 21 (1) ◽  
pp. 23-35 ◽  
Author(s):  
David N. Bucklin ◽  
Mathieu Basille ◽  
Allison M. Benscoter ◽  
Laura A. Brandt ◽  
Frank J. Mazzotti ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Gabriela Alves-Ferreira ◽  
Ingrid Beatriz Ferreira da Paixão ◽  
Fausto Nomura

Abstract: Tadpoles are abundant in the environments in which they occur and remain in aquatic habitats for longer periods than adults, being relatively easier to collect. Despite the increase in tadpole research in the past decade, our understanding of its morphological diversity remains limited. Here, we provide morphological characterizations for larvae of 15 anuran species that occur at Emas National Park (ENP) and its surroundings, in Goiás, and compare them with descriptions available in the literature for other locations. We also present an update of the list of anuran species known to the ENP, based on tadpole sampling. We found tadpoles from 15 anuran species, of which five represent new records for the park. Many species showed variations in morphological characters when compared with descriptions available in the literature for other locations, reinforcing the importance of describing larvae from different populations. Through the exploration of morphological characters, it is possible to make inferences about the functional diversity of the larvae and questions related to the homology of characters, in addition to assisting in the identification and taxonomic distinction of species. Studies with tadpole communities can generate key information about the factors that drive the anurans' richness and distribution and can provide support for establishing more consistent conservation strategies and management plans.


Sign in / Sign up

Export Citation Format

Share Document