scholarly journals Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

2016 ◽  
Vol 11 (1) ◽  
pp. 260-266
Author(s):  
Ajinkya Deshpande ◽  
Pratiksinh Chavda ◽  
Heena Kadeval

Biodiesel is biodegradable, clean-burning, non-toxic, renewable, high-quality, and cheap diesel fuel made primarily from waste vegetable oil which can be used without any alterations in engine design. The paper is concerned with the extraction and quality evaluation of the biodiesel fuels synthesized from waste soya bean cooking oil. Waste soya bean cooking oil had high amount of free fatty acid. Thus, single step transesterification process with the aid of homogeneous catalyst as 1% potassium hydroxide were implemented in this experiment. Methanol was chosen as alcohol solvent. In the transesterification process, the triglycerides in waste cooking oil was reacted with a methanol to form esters and glycerol as by product.The biodiesel were extracted for different oil to methanol ratio as 1:2, 1:3 and 1:4. The highest biodiesel yield of 76% was obtained at 1:3 volumetric ratio for 60 ºC reaction temperature and 1250 rpm stirring speed. Results show that the optimal methyl ester yield of 90% occurred at methanol: oil volume ratio of 3:1. The product met the ASTM fuel standards for relative density, acid value, relative density, calorific value, flash point and kinematic viscosity.

2014 ◽  
Vol 660 ◽  
pp. 386-390 ◽  
Author(s):  
Norazwan Azman ◽  
Mirnah Suardi ◽  
Amir Khalid

The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.


2020 ◽  
Vol 82 (4) ◽  
Author(s):  
Nik Nur Fatin Amiera Nik Aziz ◽  
Mazlan Said ◽  
Muhammad Syahiran Abdul Malik ◽  
Mohammad Nazri Mohd. Jaafar ◽  
Norazila Othman ◽  
...  

Depletion of fossil fuels, concerns on environment, and fuel price fluctuation have become the major drives in searching for sustainable alternative fuel. In that regard, a study was conducted to evaluate the combustion performance of Waste Cooking Oil (WCO) converted into biodiesel and blended with Conventional Diesel Fuel (CDF) as a mean of sustainable replacement for diesel fuel. In this study, the production of biodiesel fuel from waste cooking oil was done via transesterification process, using the single step approach. The properties of the WCO biodiesel was characterized. The combustion performance of the produced fuels has been studied for B10 and B30 biodiesel from WCO and CDF (as baseline) based on their wall temperature profiles and gaseous emissions generated such as nitrogen oxides (NOx), carbon monoxide (CO) and sulphur dioxide (SO2). It was found that the B30 WCO biodiesel emits lower emission compared to CDF but at the same time generates a lower temperature profile.


2022 ◽  
Vol 34 (2) ◽  
pp. 319-323
Author(s):  
K.A. Viraj Miyuranga ◽  
Udara S.P.R. Arachchige ◽  
Danushka Thilakarathne ◽  
Randika A. Jayasinghe ◽  
Nuwan A. Weerasekara

Biodiesel is a renewable fuel with similar chemical and physical properties to diesel. The study used waste cooking oil to make biodiesel because reusing waste cooking oil harms human health by raising FFA levels above the norm. Transesterification was performed at 60 °C using a 1:5 methanol to waste cooking oil volume ratio, 30 min reaction time, 600 rpm stirring speed and 1% wt. KOH was employed as a homogenous base catalyst. Biodiesel samples of B0, B2, B5, B20, B40 and B100 were processed at 25 ºC in combination with petrodiesel. Samples were tested for density, kinetic viscosity, flash point, acid value and pH. The fuel economy and flue gas analysis were performed using three-wheeler diesel. The amount of waste cooking oil biodiesel increases the density, kinematic viscosity, flash point, acid value and pH of the sample. In blended diesel, the amount of biodiesel also lowered CO2, CO, NO, NOx, hydrocarbon (HC) and SO2 emissions.


2020 ◽  
Vol 24 (5) ◽  
pp. 749-753
Author(s):  
A.O. Mustapha ◽  
T.A. Amodu ◽  
R.A. Adepoju

The waste cooking oil (WCO) has been a prospective and cheap feedstock for biodiesel with no competing food uses, but impurities affects biodiesel yield and result in higher production cost. This study examined the effects of degumming WCO on the physicochemical and fuel properties of biodiesel using degummed-bleached cooking oil (DCO), and methanol in the presence of sodium hydroxide catalyst. The properties and fatty acids profile were determined using the Association of Officials of Analytical Chemists (AOAC), American Society for Test and Material (ASTM) Quality, gas chromatography mass spectroscopy (GCMS) technique while the Fourier transform infrared (FTIR) gave the foremost peak regions between 1600-3600 cm-1. The pH of degummed cooking methyl ester (DCME), degummed-bleached cooking oil (DCO) and WCO varied between 5.83 and 8.61. Density of DCME, DCO and WCO varied between 0.88 and 0.93 (g/cm3). Comparing the quality improvements between DCO and WCO, the results showed percentage increases in properties such as recovery yield (8.5%), acid value (61.5%), saponification value (10.8%), iodine value (4.9%), peroxide value (26.9%), calorific value (10.9%), specific gravity (6.3%), density (2.2%), kinematic viscosity @ 40OC (54.2%), smoke point, OC (30.9%), flash point, OC (12.1%), fire point, OC (10.8%), pour point @ 40oC (2.3%), higher heating value (0.7%), and cetane number (-29.6%). The fatty acids profile in DCO has octanoic acid (5.86%), benzoic acid (3.74%), and hexadecanoic acid (74%) was the most abundant. The biodiesel from DCO as feedstock have quality improvements over WCO, and values compared well with ASTM standard recommendations. Keywords: biodiesel, waste cooking oil, degumming, physicochemical


Author(s):  
Donald Raoul Tchuifon Tchuifon ◽  
Serges Bruno Lemoupi Ngomade ◽  
George Nche Ndifor-Angwafor ◽  
Paul Alain Nanssou Kouteu ◽  
Tchoumboue Nsah-Ko ◽  
...  

Waste cooking oils are an agro-food waste with adverse effects on the health of living organisms and the environment. The main objective of this work is to valorize waste cooking oil for the synthesis and physicochemical characterization of biodiesel. The method used is based on the transesterification reaction of the oils using methanol and a basic homogeneous catalyst. In this study we employ waste from refined palm oil used for frying doughnuts. After optimization a reaction time of 2 hours, KOH catalyst, and a molar ratio of 9:1 were selected to obtain a good quality biodiesel. Physicochemical characterization was performed on the biodiesel to obtain its density, viscosity, calorific value, acid number, saponification index and IR spectral features. The analysis shows that the biodiesel obtained after transesterification has physicochemical characteristics similar to those of diesel and is consistent with American standards.


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


2013 ◽  
Vol 146 ◽  
pp. 785-788 ◽  
Author(s):  
Changjun Zou ◽  
Pinwen Zhao ◽  
Lihong Shi ◽  
Shaobing Huang ◽  
Pingya Luo

Sign in / Sign up

Export Citation Format

Share Document