Mercury Induced Biochemical Alterations As Oxidative Stress In Mugil Cephalus In Short Term Toxicity Test

2013 ◽  
Vol 8 (1) ◽  
Author(s):  
J Rajkumar ◽  
Samuel Tennyson
Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 253
Author(s):  
Graciela Gavia-García ◽  
Juana Rosado-Pérez ◽  
Taide Laurita Arista-Ugalde ◽  
Itzen Aguiñiga-Sánchez ◽  
Edelmiro Santiago-Osorio ◽  
...  

A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 435
Author(s):  
Reham Z. Hamza ◽  
Mohammad S. Al-Harbi ◽  
Munirah A. Al-Hazaa

Aging is a neurological disease that is afforded by incidence of oxidative stress. Chitosan has received global interests due to its wide medical uses. Quercetin (Q) is a bioflavonoid and widely distributed in vegetables and fruits. Resveratrol is considered as a potent antioxidant and is a component of a wide range of foods. The using of either chitosan nanopartciles (CH-NPs), querectin (Q), and resveratrol (RV) to reduce the oxidative stress and biochemical alterations on brain and testicular tissues induced by D-galactose (DG) (100 mg/Kg) were the aim of the present study. This study investigated the probable protective effects of CH-NPs in two doses (140,280 mg/Kg), Q (20 mg/Kg) and RV (20 mg/Kg), against DG induced aging and neurological alterations. Brain antioxidant capacity as malonaldehyde (MDA), catalase (CAT), and glutathione reductase (GRx), as well as histopathological damages of the brain and testicular tissues were measured. The DG treated group had significantly elevated the oxidative stress markers by 96% and 91.4% in brain and testicular tissues respectively and lower significantly the antioxidant enzyme activities of both brain and testicular tissues than those of the control group by 86.95%, 69.27%, 83.07%, and 69.43%. Groups of DG that treated with a combination of CH-NPs in two doses, Q and RV, the levels of oxidative stress marker declined significantly by 68.70%, 76.64% in brain tissues and by 74.07% and 76.61% in testicular tissues, and the enzymatic antioxidants increased significantly by 75.55%, 79.24%, 62.32%, and 61.97% as compared to the DG group. The present results indicate that CH-NPs, Q, and RV have protective effects against DG-induced brain and testis tissue damage at the biochemical and histopathological levels. Mechanisms of this protective effect of used compounds against neurological and testicular toxicity may be due to the enhanced brain and testis antioxidant capacities.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Haaike Colemonts-Vroninks ◽  
Jessie Neuckermans ◽  
Lionel Marcelis ◽  
Paul Claes ◽  
Steven Branson ◽  
...  

Hereditary tyrosinemia type 1 (HT1) is an inherited condition in which the body is unable to break down the amino acid tyrosine due to mutations in the fumarylacetoacetate hydrolase (FAH) gene, coding for the final enzyme of the tyrosine degradation pathway. As a consequence, HT1 patients accumulate toxic tyrosine derivatives causing severe liver damage. Since its introduction, the drug nitisinone (NTBC) has offered a life-saving treatment that inhibits the upstream enzyme 4-hydroxyphenylpyruvate dioxygenase (HPD), thereby preventing production of downstream toxic metabolites. However, HT1 patients under NTBC therapy remain unable to degrade tyrosine. To control the disease and side-effects of the drug, HT1 patients need to take NTBC as an adjunct to a lifelong tyrosine and phenylalanine restricted diet. As a consequence of this strict therapeutic regime, drug compliance issues can arise with significant influence on patient health. In this study, we investigated the molecular impact of short-term NTBC therapy discontinuation on liver tissue of Fah-deficient mice. We found that after seven days of NTBC withdrawal, molecular pathways related to oxidative stress, glutathione metabolism, and liver regeneration were mostly affected. More specifically, NRF2-mediated oxidative stress response and several toxicological gene classes related to reactive oxygen species metabolism were significantly modulated. We observed that the expression of several key glutathione metabolism related genes including Slc7a11 and Ggt1 was highly increased after short-term NTBC therapy deprivation. This stress response was associated with the transcriptional activation of several markers of liver progenitor cells including Atf3, Cyr61, Ddr1, Epcam, Elovl7, and Glis3, indicating a concreted activation of liver regeneration early after NTBC withdrawal.


2014 ◽  
Vol 68 (2) ◽  
pp. 237-258 ◽  
Author(s):  
L. A. Maranho ◽  
L. B. Moreira ◽  
R. M. Baena-Nogueras ◽  
P. A. Lara-Martín ◽  
T. A. DelValls ◽  
...  

2021 ◽  
Vol 118 (43) ◽  
pp. e2100566118
Author(s):  
Oksana Kutsyr ◽  
Agustina Noailles ◽  
Natalia Martínez-Gil ◽  
Lucía Maestre-Carballa ◽  
Manuel Martinez-Garcia ◽  
...  

A high-fat diet (HFD) can induce hyperglycemia and metabolic syndromes that, in turn, can trigger visual impairment. To evaluate the acute effects of HFD feeding on retinal degeneration, we assessed retinal function and morphology, inflammatory state, oxidative stress, and gut microbiome in dystrophic retinal degeneration 10 (rd10) mice, a model of retinitis pigmentosa, fed an HFD for 2 to 3 wk. Short-term HFD feeding impaired retinal responsiveness and visual acuity and enhanced photoreceptor degeneration, microglial cell activation, and Müller cell gliosis. HFD consumption also triggered the expression of inflammatory and oxidative markers in rd10 retinas. Finally, an HFD caused gut microbiome dysbiosis, increasing the abundance of potentially proinflammatory bacteria. Thus, HFD feeding drives the pathological processes of retinal degeneration by promoting oxidative stress and activating inflammatory-related pathways. Our findings suggest that consumption of an HFD could accelerate the progression of the disease in patients with retinal degenerative disorders.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (01) ◽  
pp. 5-22
Author(s):  
K Challabotla ◽  
◽  
D Banji ◽  
O.J.F Banji ◽  
Chilipi K Reddy

Ageing is a natural process characterized by progressive deterioration of biological functions. Ageing causes both morphological as well as biochemical alterations in various body organs leading to deterioration of health. Proteins, enzymes and neurotransmitters are affected, which in turn can result in dysregulation of various pathways. WHO has reported that by 2020, three quarters of all deaths in developing countries will be age-associated. Currently more than 300 theories exist to explain the phenomenon of ageing; amongst them the oxidative stress theory of ageing is most studied and accepted for the molecular basis of ageing. All these processes can progress at an unprecedented pace on contact with triggering factors, leading to the development of pathological ageing. The probability of developing neurodegenerative and metabolic disorders is relatively high under such circumstances. This review emphasizes the theories and mechanisms of ageing and an overview on the aspects of age associated biochemical changes and the implications on the brain, liver and various organ systems.


Sign in / Sign up

Export Citation Format

Share Document