Numerical predictions of the time-dependent temperature field for the 7thCardington compartment fire test

2005 ◽  
Vol 5 (6) ◽  
pp. 421-441 ◽  
Author(s):  
Antonio M.G. Lopes ◽  
Gilberto C. Vaz ◽  
Aldina Santiago
Author(s):  
W. F. Anderson ◽  
I. C. Pyrah ◽  
F. Haji-Ali

AbstractAlthough BS 5930:1981 describes both Menard and self-boring pressuremeter tests, little guidance is given on test methods. A number of techniques, both stress controlled and strain controlled, have been used and it has been shown that for clays the test technique has a significant influence on the derived strength and modulus parameters.When a pressuremeter test is carried out in a clay, it is assumed that shearing occurs under undrained conditions. However, in addition to immediate shear strain, some creep and local consolidation will occur in the soil around the expanding borehole. These two phenomena are time-dependent and variations in test technique will affect the test data and hence the derived strength and modulus values.To obtain a better understanding of these effects, pressuremeter tests have been studied both experimentally and numerically. Experimentally, pressuremeter tests have been simulated by expanding cylindrical cavities in samples of three clays prepared with known stress history and the results compared with numerical predictions where the effects of immediate shear, creep and consolidation can be separated. The experimental results compare well with the numerical predictions.This has given a new insight into the behaviour of clay soils during pressuremeter tests. The results indicate that any simple standardization of pressuremeter test technique should be approached with caution.


2011 ◽  
Vol 682 ◽  
pp. 460-490 ◽  
Author(s):  
B. ISSENMANN ◽  
R. WUNENBURGER ◽  
H. CHRAIBI ◽  
M. GANDIL ◽  
J.-P. DELVILLE

We present an analytical model of the time-dependent, small-amplitude deformation of a free liquid surface caused by a spatially localized, axisymmetric, pulsed or continuous, acoustic or electromagnetic radiation pressure exerted on the surface. By exactly solving the unsteady Stokes equation, we predict the surface dynamics in all dynamic regimes, namely inertial, intermediate and strongly damped regimes. We demonstrate the validity of this model in all dynamic regimes by comparing its prediction to experiments consisting of optically measuring the time-dependent curvature of the tip of a hump created at a liquid surface by the radiation pressure of an acoustic pulse. Finally, we present a numerical scheme simulating the behaviour of a fluid–fluid interface subjected to a time-dependent radiation pressure and show its accuracy by comparing the numerical predictions with the analytical model in the intermediate and strongly damped regimes.


2000 ◽  
Author(s):  
D. Mishra ◽  
A. Pal ◽  
N. Nemick ◽  
A. K. Saha ◽  
V. Prasad ◽  
...  

Abstract A simulated, non-pressurized hydrothermal system consisting of a fluid-superposed porous layer is fabricated and used for visualization and measurement of the temperature field using liquid crystal thermography. The system is used for various boundary conditions with pure glycerine as the working fluid and the porous layer is made of 3mm diameter glass beads. Experimental data is recorded using a color CCD camera and flow visualization is obtained through a long exposure video photography. A calibration is performed to relate the temperature with scattered colors at an orthogonal angle to the incoming white light sheet. Quantitative temperature data is obtained through this calibration and compared with the numerical predictions. For numerical studies the system is modeled as a composite layer of fluid and porous charge using the Darcy-Brinkman-Forchheimer flow model. A two-dimensional curvilinear algorithm using finite volume technique with a non-staggered grid is used to simulate the temperature field and transport phenomena for various Rayleigh–Darcy number combinations of varying aspect ratio. The results, for the first time, make an attempt towards understanding the transport process in hydrothermal system through both numerical simulation and experimental validation.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
J. L. González-Santander ◽  
G. Martín

We consider the solutions found in the literature for heat transfer in surface grinding, assuming a constant heat transfer coefficient for the coolant acting on the workpiece surface and a constant or linear heat flux profiles entering into the workpiece. From the integral form of the time-dependent temperature field reached in the workpiece, assuming the previous conditions, we prove that the maximum temperature always occurs in the stationary regime on the workpiece surface within the contact zone between the wheel and the workpiece. This result assures a very rapid method for the theoretical computation of the maximum temperature.


Volume 1 ◽  
2004 ◽  
Author(s):  
B. Xu ◽  
B. Q. Li ◽  
D. E. Stock

The velocity and temperature fields induced by natural convection in liquid gallium were measured. Measurements were taken with and without an external magnetic field applied to the liquid gallium. The velocity field was measured with a hot-film anemometer and the temperature field with a thermocouple. The hot film was calibrated over a narrow range of temperatures in a rotating turntable filled with liquid gallium. The external magnetic field damped both the velocity and temperature fields compared to similar conditions when no external magnetic field was present. The experimental results compared reasonably well with previous numerical predictions.


2015 ◽  
Vol 772 ◽  
pp. 197-203 ◽  
Author(s):  
Amin Bahrami ◽  
Siamak Hosseinzadeh ◽  
Ramin Ghasemiasl ◽  
Morteza Radmanesh

Analytical solution of the axisymmetric two-dimensional non-Fourier temperature field within a hollow sphere is investigated considering Cattaneo-Vernotte constitutive equation with general time-dependent heat flux. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. The method of solution is the standard separation of variables method. Duhamel integral is used for applying the time-dependent boundary conditions. The presented solution is applied to special case of harmonic heat flux on outer surface.


Sign in / Sign up

Export Citation Format

Share Document