1707 Measurement of Cutting Temperature using Micro Sheathed Thermocouple Implanted in Cutting Tool Edge

Author(s):  
Eiji KONDO ◽  
Shusaku WATARI ◽  
Yuki NISHIMURA ◽  
Mitsuhiro NAKAO
2011 ◽  
Vol 101-102 ◽  
pp. 938-941
Author(s):  
Xin Li Tian ◽  
Hao Wang ◽  
Xiu Jian Tang ◽  
Zhao Li ◽  
Ai Bing Yu

Regrinding of wasted cutting tools can recycle resources and decrease manufacturing costs. Influence of relative tool sharpness and tool cutting edge angle on tool edge radius were analyzed. Cutting force and cutting temperature were simulated with FEM on different edge radius. Edge preparation experiments were carried out though an abrasive nylon brushing method. The results show that RTS and cutting edge angle have influence on edge radius. Small edge radius might result in small cutting forces and lower average temperatures, could maintain the cutting state between tool and workpiece. The cutting edge defects can be eliminated through edge preparation, and a smooth cutting edge can be obtained. Cutting tool life will be improved through proper edge design and edge preparation.


2017 ◽  
Vol 728 ◽  
pp. 85-90 ◽  
Author(s):  
Pramote Poonayom ◽  
Voraya Wattanajitsiri ◽  
Kittipong Kimapong

The feasibility study of the face-milling performance of hard-facing weld metal on JIS-S50C carbon steel was investigated on microstructure, chip characteristics, wear properties, and surface roughness. Discontinuous chips were found in all machining conditions. No buffering weld metal (No buffering layer, NBL) produces longer and thicker chips than that of the buffering weld metal (Buffering layer, BL). The flank wear of the cutting tool edge increases with the cutting length of the test specimen. The maximum wear of 850 mm was found in a wet condition of the NBL weld metal which is about 4 times higher than that of the base metal. High hardness value of the NBL weld metal produces a higher flank wear of the cutting tool edge than that of the BL weld metal. After comparing the wear of the cutting tool edge in wet and dry conditions, it was found that the dry condition exhibits a smaller flank wear than that of the wet condition. In the wet condition, more amount of coolant oil droplets cannot penetrate into the chip-tool interface and then provides an insufficient amount of lubricant in order to decrease the cutting temperature. Therefore wet condition produces severe wear of the cutting.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Xuefeng Zhao ◽  
Hao Qin ◽  
Zhiguo Feng

Tool edge preparation can improve the tool life, as well as cutting performance and machined surface quality, meeting the requirements of high-speed and high-efficiency cutting. In general, prepared tool edges could be divided into symmetric or asymmetric edges. In the present study, the cemented carbide tools were initially edge prepared through drag finishing. The simulation model of the carbide cemented tool milling steel was established through Deform software. Effects of edge form factor, spindle speed, feed per tooth, axial, and radial cutting depth on the cutting force, the tool wear, the cutting temperature, and the surface quality were investigated through the orthogonal cutting simulation. The simulated cutting force results were compared to the results obtained from the orthogonal milling experiment through the dynamometer Kistler, which verified the simulation model correctness. The obtained results provided a basis for edge preparation effect along with high-speed and high effective cutting machining comprehension.


2020 ◽  
Vol 2020 (0) ◽  
pp. S13311
Author(s):  
Yuhei KATO ◽  
Hiroshi TANAKA ◽  
Yoshitsugu KAWASE ◽  
Yoichi AKAGAMI
Keyword(s):  

2013 ◽  
Vol 690-693 ◽  
pp. 3359-3364
Author(s):  
Shou Jin Sun ◽  
Milan Brandt ◽  
John P.T. Mo

A higher strength and heat resistance are increasingly demanded from the advanced engineering materials with high temperature applications in the aerospace industry. These properties make machining these materials very difficult because of the high cutting forces, cutting temperature and short tool life present. Laser assisted machining uses a laser beam to heat and soften the workpiece locally in front of the cutting tool. The temperature rise at the shear zone reduces the yield strength and work hardening of the workpiece, which make the plastic deformation of the hard-to-machine materials easier during machining. The state-of-the-art, benefits and challenges in laser assisted machining of metallic materials are summarized in this paper, and the improvement of tool life is discussed in relation to laser power, beam position and machining process parameters.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 271
Author(s):  
Bo Wen ◽  
Sho Sekine ◽  
Shinichi Osawa ◽  
Yuki Shimizu ◽  
Hiraku Matsukuma ◽  
...  

This paper describes a comparison of the mechanical structures (a double-sided beam and a cantilever beam) of a probe in a tool edge profiler for the measurement of a micro-cutting tool. The tool edge profiler consists of a positioning unit having a pair of one-axis DC servo motor stages and a probe unit having a laser displacement sensor and a probe composed of a stylus and a mechanical beam; on-machine measurement of a tool cutting edge can be conducted with a low contact force through measuring the deformation of the probe by the laser displacement sensor while monitoring the tool position. Meanwhile, the mechanical structure of the probe could affect the performance of measurement of the edge profile of a precision cutting tool. In this paper, the measurement principle of the tool edge profile is firstly introduced; after that, slopes and a top-flat of a cutting tool sample are measured by using a cantilever-type probe and a double-sided beam-type probe, respectively. The measurement performances of the two probes are compared through experiments and theoretical measurement uncertainty analysis.


2013 ◽  
Vol 7 (3) ◽  
pp. 313-320 ◽  
Author(s):  
Ryutaro Tanaka ◽  
◽  
Akira Hosokawa ◽  
Tatsuaki Furumoto ◽  
Takashi Ueda ◽  
...  

This study was conducted to investigate the effects of tool edge geometry on cutting temperature in the continuous cutting of case hardened steel. The tool edge temperature was measured using a two-color pyrometer with an optical fiber. The tool flank temperature increased with the negative land angle. When the flank wear VB was 0.05 mm, the tool flank temperature was only a little higher than with a new insert. However, when the flank wear VB was 0.1 mm, the tool flank temperature was dramatically higher. A horned insert resulted in higher tool flank temperature than when an insert without a horned edge was used. The tendency was remarkable at larger negative land angles and wider flank wear widths. Tool flank temperature increased with an increase in the nose radius of inserts. When comparing inserts with the same nose radius, the insert with the wiper edge caused higher tool flank temperatures than did the insert without the wiper edge.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Mohamed A. Shalaby ◽  
Stephen C. Veldhuis

Inconel 100 (IN100) aerospace superalloy is used in manufacturing aero-engine components that operate at intermediate temperatures. It is considered to be a hard-to-cut material. Chipping of the tool edge is one of the major failure mechanisms of ceramic tools in finish cutting of superalloys, which causes a sudden breakage of the cutting edge during machining. Cutting temperature significantly depends on cutting speed. Varying the cutting speed will affect the frictional action during the machining operations. However, proper selection of the cutting variables, especially the cutting speed, can prevent chipping occurrence. In this work, the influence of controlling the cutting speed on the chipping formation in dry finish turning of IN100 aerospace superalloy using SiAlON ceramic tool has been investigated. Scanning electron microscope (SEM)/energy dispersing spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and three-dimensional wear measurements were used to make the investigations of the worn tool edges. It was found that variations of the cutting speeds in a certain range resulted in the generation of different lubricious and protective tribo-films. The presence of these tribo-films at the cutting region proved essential to prevent chipping of the cutting tool edge and to improve its wear resistance during finish turning of age-hardened IN 100 using SiAlON ceramic tools. Chip compression ratio and calculated values of the coefficient of friction at the tool–chip interface confirmed these results.


Author(s):  
O Kalantari ◽  
MM Fallah ◽  
F Jafarian ◽  
SR Hamzeloo

In laser-assisted machining (LAM), the laser source is focused on the workpiece as a thermal source and locally increases the workpiece temperature and makes the material soft ahead of the cutting tool so using this method, the machining forces are reduced, which causes improving the surface quality and cutting tool life. Machinability of advanced hard materials is significantly low and conventional methods do not work effectively. Therefore, utilizing an advanced method is inevitable. The product life and performance of complex parts of the leading industry depends on surface integrity. In this work, the surface integrity features including microhardness, grain size and surface roughness (Ra) and also the maximum cutting temperature were investigated experimentally in LAM of Ti-6Al-4V. According to the results, cutting speed has inverse effect on the effectiveness of LAM process because with increasing speed (15 to 63 m/min), temperature decreases (524 °C to 359 °C) and surface roughness increases (0.57 to 0.71 μm). Enhancing depth of cut and feed has direct effect on the process temperature, grain size, microhardness and surface roughness.


2012 ◽  
Vol 445 ◽  
pp. 1041-1046
Author(s):  
Hamed Razavi ◽  
Mohammad Javad Nategh ◽  
H. Soleimanimehr

The experimental investigation of UAT shows that the movement of cutting tool edge relative to the workpiece results from the cutting speed, feed speed and tools vibration in tangential direction affects the lateral machined surface of workpiece and leaves a repeating pattern of toothed regions on it. In UAT process, because of constant feed rate of tool toward workpiece, the cutting tool never separates from workpiece, though the tool rake face may separate periodically from chip in every cycle of vibration. This results in an increase in the surface hardness of the lateral machined surface in comparison with conventional turning (CT). The results of the present study confirm the advantage of UAT as far as the lower cutting force is concerned compared with CT. The higher surface hardness of the lateral surface observed in UAT causes the maximum cutting force to increase but the average force decreases with respect to CT.


Sign in / Sign up

Export Citation Format

Share Document