1429 Effbct of Roll Surface Profiles on Friction Coefficient and Rolled Sheet Characteristics in Cold Rolling

2008 ◽  
Vol 2008.1 (0) ◽  
pp. 265-266
Author(s):  
Hiroyasu YAMAMOTO ◽  
Mansaku SASAKI ◽  
Takahiro KITAMURA
1997 ◽  
Vol 119 (2) ◽  
pp. 349-357 ◽  
Author(s):  
Hans Keife ◽  
Toste Jonsa¨ter

A theoretical model for simulation of the cold rolling process is presented. A characteristic part comprises the coupling of the bulk plastic deformation and the local plastic deformation of the strip due to impression of roll surface asperities into the work material. The lubricant, which in this case is a liquid, is modeled as a Newtonian fluid. The shear stresses at the roll/strip interface will he a function of the real area of contact, the shear stresses from boundary lubrication and internal shearing in the lubricant film. Simulations have been carried out for rolling with different speeds. The result is a diagram that can be interpreted as a Stribeck curve for cold rolling. The mean friction coefficient in the roll bite decreases with increasing speed to a minimum value i.e., mixed film lubrication prevails. For higher speeds the friction coefficient increases (hydrodynamic lubrication). The influence of roll surface roughness, thickness reductions, and viscosities of lubricant upon the Stribeck curve is also studied. It is concluded that the model can be used to find optimal combination of process parameters for the cold rolling process.


2011 ◽  
Vol 298 ◽  
pp. 203-208 ◽  
Author(s):  
Zi Li Jin ◽  
Wei Li ◽  
Yi Ming Li

With the help of orientation distribution function (ODF) analysis, experiments of different hot band grain microstructure 0.33% silicon steel were cold-rolled and annealed in the laboratory,to study the effect of the microstructure hot-rolled steel strip for cold rolled non-oriented silicon steel microstructure and texture of recrystallization annealing. The results show that hot rolled microstructure on cold rolled Non-Oriented Electrical Steel cold-rolled sheet evolution of texture and recrystallization have important influence, the quiaxed grain structure of steel by cold rolling and recrystallization annealing, the recrystallization speed than the fiber grain-based mixed crystals recrystallization fast , With the equiaxed grains made of cold rolled silicon steel after annealing the {110}<UVW> texture components was enhanced and {100}<uwv> texture components weakened. Different microstructure condition prior to cold rolling in the recrystallization annealing process the texture evolution has the obvious difference, the equiaxial grain steel belt cold rolling and annealing, has the strong crystal orientation. This shows that the equiaxed grain when hot microstructure is detrimental to the magnetic properties of cold-rolled non-oriented silicon steel to improve and increase.


2007 ◽  
Vol 550 ◽  
pp. 339-344 ◽  
Author(s):  
Shigeo Saimoto ◽  
Hai Ou Jin

A nominally pure Al slab was thermo-mechanically treated to result in a near random texture of 90 m grain size. Subsequent cold rolling with intermediate anneals at 230, 275, and 300°C reduced the Fe solute to near equilibrium compositions below 0.5 ppm atomic. The final cold rolled sheet continuously recrystallized; grain growth of this structure is reported. A grain-growth kinetics mapping was generated, correlating the parameters of Fe-in-Al solubility limit, Fe diffusivities in the grain boundaries and the Al lattice and the activation energies for migration rates.


2005 ◽  
Vol 495-497 ◽  
pp. 423-428 ◽  
Author(s):  
Q.W. Jiang ◽  
E.B. Zhao ◽  
J.G. Zhang ◽  
Y. Chen ◽  
Gang Wang ◽  
...  

The microstructure of Ti+P IF steel were studied after warm rolling, cold rolling and recrystallization using X-Ray, TEM and SEM. The results show that the characteristics of warm rolled sheet are the same as that of the cold rolled, but the texture displays different characteristics in the subsequent cold rolling and recrystallization because of the numerous second-phase particles. In this work, a Ti+P IF steel sheet with high strength and plastic strain ratio was obtained.


2018 ◽  
Author(s):  
Feng Zhang ◽  
Arif S. Malik ◽  
Haoliang Yu

Roll diameter surface deviations can generate significant strip flatness defects in the cold rolling of thin gauge metal sheet. The resolution of roll profile deviations can vary between 0.001 and 0.01 mm. In such a high-fidelity contact problem, lack of availability of the measured data, and high computational cost in using the data in simulations, make it very difficult to predict the effects of such deviations. Nonetheless, an understanding of how high-fidelity roll profile deviations can lead to rolled sheet flatness defects is very important since such defects may be unrecoverable. This paper evaluates the ability of a simplified mixed finite element roll-stack model to predict contact behavior effects on the rolled sheet created by high-fidelity roll profile deviations. The simplified finite element method combines 3D Timoshenko beam elements with Winkler elastic foundations. The beam elements are used to capture bending and shear deformation, while the Winkler foundations are tested for their ability to accurately and efficiently capture the high-fidelity flattening-type contact behavior. Results for a simple roll and plate contact case study indicate favorable comparison with the results obtained from a large-scale commercial finite element simulation, and yet the methods requires a small fraction of the associated computing time and memory. The work also offers significant insights into the sheet flatness defects that can arise in cold rolling because of low magnitude but high fidelity roll diameter machining errors.


Sign in / Sign up

Export Citation Format

Share Document