E101 Development of High Performance Steam Stop/Control Valve for Steam Turbine

2010 ◽  
Vol 2010.15 (0) ◽  
pp. 159-162
Author(s):  
Tsutomu OOISHI ◽  
Fumiio OOTOMO ◽  
Yasunori IWAI ◽  
Yoshiki NIIZEKI ◽  
Tomoo OOFUJI
2013 ◽  
Vol 712-715 ◽  
pp. 1263-1267
Author(s):  
Shan Tu ◽  
Shu Ming Wu ◽  
Qi Zhou ◽  
Hong Mei Zhang ◽  
Xiao Qing Zhu

The main inlet component of steam turbine is control valve. The stable operation of the steam turbine control valve is vital for safe and stable operation of the steam turbine and safety production of the power plant. However, due to the complexity of the structure and unsteady characteristics of steam flow in the valve, there is not enough experimental method about the detailed flow characteristics of the area near control valve disc and the inside of the valve chamber up to now. This article is to focus on the simulation of the steam turbine control valve interior flow field which includes the valve pre-inlet channel in different conditions, then find the reasons which caused instability and pressure loss of the control valve by analyzing the flow field details, finally further optimization design. The profile matching of the valve disc and valve seat has a great influence on the interior flow field of control valve, so analysis of the high performance valve disc shape and divergence angle of valve seat is carried out, and the research conclusion is used for guide design and development of the control valve.


2021 ◽  
Author(s):  
Weijun Li ◽  
Huayang Li ◽  
Jinmei Song ◽  
Chunjie Guo ◽  
Huimao Zhang ◽  
...  

2021 ◽  
Vol 58 (4) ◽  
pp. 216-223
Author(s):  
A. Neidel ◽  
E. Cagliyan ◽  
B. Fischer

Abstract Severe scaling caused the guiding pin of two control valves of a smaller industrial steam turbine to seize which thus led to a malfunction. The customer sought clarification on whether the oxidation products are really common scale. This could be confirmed.


Author(s):  
Peng Wang ◽  
Hongyu Ma ◽  
Yingzheng Liu

In steam turbine control valves, pressure fluctuations coupled with vortex structures in highly unsteady three-dimensional flows are essential contributors to the aerodynamic forces on the valve components, and are major sources of flow-induced vibrations and acoustic emissions. Advanced turbulence models can capture the detailed flow information of the control valve; however, it is challenging to identify the primary flow structures, due to the massive flow database. In this study, state-of-the-art data-driven analyses, namely, proper orthogonal decomposition (POD) and extended-POD, were used to extract the energetic pressure fluctuations and dominant vortex structures of the control valve. To this end, the typical annular attachment flow inside a steam turbine control valve was investigated by carrying out a detached eddy simulation (DES). Thereafter, the energetic pressure fluctuation modes were determined by conducting POD analysis on the pressure field of the valve. The vortex structures contributing to the energetic pressure fluctuation modes were determined by conducting extended-POD analysis on the pressure–velocity coupling field. Finally, the dominant vortex structures were revealed conducting a direct POD analysis of the velocity field. The results revealed that the flow instabilities inside the control valve were mainly induced by oscillations of the annular wall-attached jet and the derivative flow separations and reattachments. Moreover, the POD analysis of the pressure field revealed that most of the pressure fluctuation intensity comprised the axial, antisymmetric, and asymmetric pressure modes. By conducting extended-POD analysis, the incorporation of the vortex structures with the energetic pressure modes was observed to coincide with the synchronous, alternating, and single-sided oscillation behaviors of the annular attachment flow. However, based on the POD analysis of the unsteady velocity fields, the vortex structures, buried in the dominant modes at St = 0.017, were found to result from the alternating oscillation behaviors of the annular attachment flow.


1983 ◽  
Vol 105 (4) ◽  
pp. 844-850 ◽  
Author(s):  
I. G. Rice

High-cycle pressure-ratio (38–42) gas turbines being developed for future aircraft and, in turn, industrial applications impose more critical disk and casing cooling and thermal-expansion problems. Additional attention, therefore, is being focused on cooling and the proper selection of materials. Associated blade-tip clearance control of the high-pressure compressor and high-temperature turbine is critical for high performance. This paper relates to the use of extracted steam from a steam turbine as a coolant in a combined cycle to enhance material selection and to control expansion in such a manner that the cooling process increases combined-cycle efficiency, gas turbine output, and steam turbine output.


Author(s):  
Tadashi Tanuma ◽  
Yasuhiro Sasao ◽  
Satoru Yamamoto ◽  
Shinji Takada ◽  
Yoshiki Niizeki ◽  
...  

Low pressure (LP) exhaust hoods are an important component of steam turbines. The aerodynamic loss of LP exhaust hoods is almost the same as those of the stator and rotor blading in LP steam turbines. Designing high performance LP exhaust hoods should lead further enhancement of steam turbine efficiency. This paper presents the results of exhaust hood computational fluid dynamics (CFD) analyses using last stage exit velocity distributions measured in a full-scale development steam turbine as the inlet boundary condition to improve the accuracy of the CFD analysis. One of the main difficulties in predicting the aerodynamic performance of the exhaust hoods is the unsteady boundary layer separation of exhaust hood diffusers. A highly accurate unsteady numerical analysis is introduced in order to simulate the diffuser flows in LP exhaust hoods. Compressible Navier-Stokes equations and mathematical models for nonequilibrium condensation are solved using the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe’s approximate Riemann solver, and the LU-SGS scheme. The SST turbulence model is also solved for evaluating the eddy viscosity. The computational results were validated using the measurement data, and the present CFD method was proven to be suitable as a useful tool for determining optimum three-dimensional designs of LP turbine exhaust diffusers.


Author(s):  
Krzysztof Dominiczak ◽  
Romuald Rządkowski ◽  
Wojciech Radulski ◽  
Ryszard Szczepanik

Considered here are Nonlinear Auto-Regressive neural networks with exogenous inputs (NARX) as a mathematical model of a steam turbine rotor used for the on-line prediction of turbine temperature and stress. In this paper on-line prediction is presented on the basis of one critical location in a high pressure steam turbine rotor, according to power plant common measurements, i.e., turbine speed, turbine load as well as steam temperature and pressure before turbine control valve. In order to obtain neural networks that will correspond to the temperature and stress the critical rotor location, an FE rotor model was built. Neural networks trained using the FE rotor model not only have FEM accuracy, but also include nonlinearity related to nonlinear steam turbine expansion, nonlinear heat exchange inside the turbine and nonlinear rotor material properties during transient conditions. Simultaneous neural networks are algorithms which can be implemented in turbine controllers. This allows for the application of neural networks to control steam turbine stress in industrial power plants.


1973 ◽  
Vol 54 (1) ◽  
pp. 289-289 ◽  
Author(s):  
Frank J. Heymann ◽  
Michael A. Staiano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document