431 Stress relaxation process of amorphous alloy from viscous flow

2000 ◽  
Vol 2000.49 (0) ◽  
pp. 243-244
Author(s):  
Kiyomoto Ito ◽  
Sigeo Kotake ◽  
Yasuyuki Suzuki ◽  
Masafumi Senoo
1996 ◽  
Vol 446 ◽  
Author(s):  
Chia-Liang Yu ◽  
Paul A. Flinn ◽  
John C. Bravman

AbstractWith a newly constructed high temperature wafer curvature system, we measured significant viscous flow of thermal oxides at temperatures as low as 800°C. In-situ measurements were performed at temperatures between 800°C and 1100°C for wet and dry thermal oxide films of various thicknesses. We found that dry oxides have higher stresses and slower stress relaxation compared to wet oxides grown at higher temperatures. The viscosity of thermal oxide thin films was found to increase with time during relaxation and a structural relaxation process is suggested to explain this phenomenon.


2018 ◽  
Vol 33 ◽  
pp. 02075 ◽  
Author(s):  
Tatyana Matseevich

The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G) are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal). The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.


2010 ◽  
Vol 65 (10) ◽  
pp. 854-858
Author(s):  
Vimal Sharma ◽  
Nagesh Thakur

The dielectric constant ε´ and dielectric loss ε´´ of the binary mixtures of tetramethylurea (TMU) and chlorobenzene (CB) have been calculated at 9.883 GHz by using standard standing microwave techniques. Gopalakrishna’s single frequency concentration variation method has been used to calculate dipole moment μ and dielectric relaxation time τ for different mole fractions of TMU in the binary mixture at different temperatures of 25 °C, 30 °C, 35 °C, and 40 °C. The variation of dielectric relaxation time with the mole fraction of TMU in the whole concentration range of the binary mixtures was found to be non-monotonic. The solute-solute and solute-solvent type of molecular associations may be proposed based upon above observations. Using Eyring rate equations the energy parameters ΔH, ΔF, and ΔS for the dielectric relaxation process and the viscous flow process have been calculated at the given temperatures. It is found from the comparison of energy parameters that, just like the viscous flow process, the dielectric relaxation process can also be treated as a rate process.


1972 ◽  
Vol 45 (1) ◽  
pp. 82-93 ◽  
Author(s):  
G. M. Bartenev ◽  
N. M. Lyalina

Abstract 1. In vulcanized rubbers containing blacks a multi-stage mechanism for stress relaxation was observed. It was discovered that the stress relaxation process consists of five fundamental processes: the first three relaxation processes, related to the slow stages of physical relaxation within the bulk of the rubber, have no connection with the fillers (“soft” domains); the fourth process has to do with the relaxation in the black-rubber domain; the fifth process involves the chemical relaxation of vulcanizates. 2. The fundamental mechanisms of the first 3 relaxation processes in the soft domains have the same activation energy values and the same segmental mechanism as the rearranged domains found in supermolecular weight structures, which are also present in unfilled vulcanizates. 3. In the investigated stress range of up to 200% elongation, the activation energy for the first 3 relaxation processes in the soft domains of filled vulcanizates is not a function of the deformation strain, whereas the activation energy of the fourth relaxation process in the black-rubber domains of filled rubbers is a function of the deformation and of the filler content. For these reasons, rubber loaded with carbon blacks, in contrast to unfilled rubbers, possess the typical nonlinearity of viscoelastic materials. 4. The activation energies of the relaxation processes in the black-rubber domains decrease in a linear fashion with the value for the initial tensile stress in filled vulcanizates, and decrease in like manner for vulcanizates containing different proportions of fillers. The kinetic units, determined from the activation energies of these processes, appeared to be segments of chains with activation energies of up to 40% more than the activation energies of the physical relaxation processes in the soft domains. The other kinetic units of the processes proved to be black particles, the dimensions of which were calculated from the values for the coefficients in the formula for relaxation time.


2001 ◽  
Vol 16 (4) ◽  
pp. 938-944 ◽  
Author(s):  
V. L. Tellkamp ◽  
S. Dallek ◽  
D. Cheng ◽  
E. J. Lavernia

A nanostructured 5083 Al–Mg alloy powder was subjected to various thermal heat treatments in an attempt to understand the fundamental mechanisms of recovery, recrystallization and grain growth as they apply to nanostructured materials. A low-temperature stress relaxation process associated with reordering of the grain boundaries was found to occur at 158 °C. A bimodal restructuring of the grains occurred at 307 °C for the unconstrained grains and 381 °C for the constrained grains. An approximate activation energy of 5.6 kJ/mol was found for the metastable nanostructured grains, while an approximate activation energy of 142 kJ/mol was found above the restructuring temperature.


1991 ◽  
Vol 40-41 ◽  
pp. 179-184
Author(s):  
K. Russew ◽  
L. Stojanova ◽  
Emília Illeková

Sign in / Sign up

Export Citation Format

Share Document