scholarly journals A Study of Direct Fuel-Injection Two-Stroke Cycle Methanol Engine.

1991 ◽  
Vol 57 (539) ◽  
pp. 2442-2448
Author(s):  
Shuicci KAJITANI ◽  
Norihiro SAWA ◽  
Shigenobu HAYASHI ◽  
Yuzuru KUBOTA
Author(s):  
R G Kenny

This paper is concerned with the exhaust emissions from two-stroke cycle spark ignition engines and the means being investigated to reduce them. The simple two-stroke engine has inherently low levels of NOx emissions and high levels of hydrocarbon emissions. The reasons for these emissions characteristics are explained by reference to the open literature. The two-stroke engine is used in a wide range of applications including low-cost, low-output mopeds and high-performance motorcycles. More recently there has been a resurgence of interest in the two-stroke as an alternative to the four-stroke engine for automotive use. A number of the recently reported approaches to emissions control are reviewed, including the use of exhaust oxidation catalysts in simple low-cost engines and direct fuel injection on more costly, multi-cylinder engines.


Author(s):  
Samara Herrmann ◽  
Macklini Dalla Nora ◽  
Thompson Diordinis Metzka Lanzanova

Reciprocating internal combustion engines have wide application in agricultural, recreational and experimental aircraft, resulting from their low cost and less complex maintenance compared to other engines. Thus, this work analyzed the performance of a conventional four-stroke engine operating in the two-stroke cycle by means of direct fuel injection and mechanical air supercharging. The use of a supercharger was essential in this design to provide adequate gas exchange inside the cylinder during the long valve overlap required, while direct fuel injection made it possible to reduce the short circuit of air-fuel mixture to the exhaust. Due to the double ignition frequency compared to a four-stroke engine, it was possible to obtain a large power density (40 kW/L) at a speed of 2400 rpm, also a specific fuel consumption of 270 g/kWh with gasoline and 400 g/kWh with ethanol. The use of ethanol in replacement of gasoline made it possible to operate at full load (160 Nm/L) at 800 rpm without the occurrence of knocking combustion.


2021 ◽  
pp. 101078
Author(s):  
Luiz C. Daemme ◽  
Renato Penteado ◽  
Rodrigo S. Ferreira ◽  
Marcelo R. Errera ◽  
Sergio M. Corrêa ◽  
...  

2018 ◽  
Vol 21 (8) ◽  
pp. 1426-1440 ◽  
Author(s):  
Buyu Wang ◽  
Michael Pamminger ◽  
Ryan Vojtech ◽  
Thomas Wallner

Gasoline compression ignition using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low-temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high-temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high-temperature gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high-temperature gasoline compression ignition combustion with port and direct injection. Engine testing was conducted at an engine speed of 1038 r/min and brake mean effective pressure of 1.4 MPa for three injection strategies, late pilot injection, early pilot injection, and port/direct fuel injection. The impact on engine performance and emissions with respect to varying the combustion phasing were quantified within this study. At the same combustion phasing, early pilot injection and port/direct fuel injection had an earlier start of combustion and higher maximum pressure rise rates than late pilot injection attributable to more premixed fuel from pilot or port injection; however, brake thermal efficiencies were higher with late pilot injection due to reduced heat transfer. Early pilot injection also exhibited the highest cylinder-to-cylinder variations due to differences in injector behavior as well as the spray/wall interactions affecting mixing and evaporation process. Overall, peak brake thermal efficiency of 46.1% and 46% for late pilot injection and port/direct fuel injection was achieved comparable to diesel baseline (45.9%), while early pilot injection showed the lowest brake thermal efficiency (45.3%).


2017 ◽  
Vol 169 (2) ◽  
pp. 18-23
Author(s):  
Jerzy MERKISZ ◽  
Marek WALIGÓRSKI

The subject of the considerations described in the paper is the problem of early detection of abnormalities and damages during operation process of the turbo diesel engine with small volume displacement and direct fuel injection, which is used in modern LDV vehicles dedicated especially for urban areas, in the context of present and future requirements for a technical object diagnostics, taking into account the criteria of optimizing overall efficiency, toxic compound emission and safety of the object in real conditions of its operation. The paper presents the results of empirical research of vibroacoustic signal application to the diagnostic evaluation of correctness of short-time engine main processes. The evaluation of the combustion process variability from structural and operational abnormalities by using dimensionless estimates of a vibration process was conducted, and functional characteristics necessary to built the diagnostic algorithm in accordance with the requirements of on-board diagnostics were obtained.


2019 ◽  
Vol 8 (4) ◽  
pp. 4048-4052

Biodiesel, a derivative of vegetable oils and animal fats, is used nowadays as an alternative renewable and sustainable fossil fuel. In this work, the investigation of manufacture, characterization, and results of biodiesel blends are carried out using two important feedstock’s, sunflower oil and ricebran oil on engines. For the collective advantageous of sunflower oil and ricebran oil, the two biodiesels are combined together and the mixture is analysed to assess the engine performance and emission characteristics. NaOH catalyzed transesterification process is used for producing the Biodiesels A 4.4 kW, four-stroke, single-cylinder and direct fuel injection diesel engine is used for measuring physic-chemical with full load and varying speed conditions and using the specifications of ASTM D6751 standard, the properties are compared. It is observed that the Biodiesel mixtures produce a low brake torque and high brake-specific fuel consumption (BSFC) in addition to the reduction of CO and HC emissions. NOx, however, is reduced considerably with the improvement of brake thermal efficiency. The Performance analysis indicates that the mixture of sunflower oil and ricebran oil improves performance and emission characterizes over sunflower oil and ricebran oil biodiesel when they are unmixed..


Sign in / Sign up

Export Citation Format

Share Document