Characterization of Surfactant Flooding for Light Oil Using Gum Arabic

Author(s):  
Oluwaseun Taiwo ◽  
Kelani Bello ◽  
Ismaila Mohammed ◽  
Olalekan Olafuyi

Surfactant flooding, a chemical IOR technique is one of the viable EOR processes for recovering additional oil after water flooding. This is because it reduces the interfacial tension between the oil and water and allows trapped oil to be released for mobilization by a polymer.In this research, two sets of experiments were performed. First, the optimum surfactant concentration was determined through surfactant polymer flooding using a range of surfactant concentration of 0.1% to 0.6% and 15% of polymer. Secondly, another set of experiments to determine the optimum flow rate for surfactant flooding was carried out using the optimum surfactant concentration obtained. Lauryl Sulphate (Sodium Dodecyl Sulphate, SDS), an anionic surfactant, was used to alter the interfacial tension and reduce capillary pressure while Gum Arabic, an organic adhesive gotten from the hardened sap of the Acacia Senegal and Acacia Seyal trees, having a similar molecular structure and chemical characteristics with Xanthan Gum, was the polymer used to mobilize the oil.The results show that above 0.5%, oil recovery decreases with increase in concentration such that between 0.5 and 0.6%, a decrease of (20% -19%) is recorded. This suggests that it would be uneconomical to exceed surfactant concentration of 0.5%. It is shown in the result of the first set of experiments that a range of oil recovery of 59% to 76% for water flooding and a range of 11.64% to 20.02% additional oil recovery for surfactant Polymer flooding for a range of surfactant flow rate of surfactant concentration of 0.1% to 0.6%. For the second sets of experiments, a range of oil recovery of 64% to 68% for water flooding and a range of 15% to 24% additional oil recovery for surfactant flooding for a range of surfactant flow rate of surfactant flow rate of 1cc/min to 6cc/min. The Optimum surfactant flow rate resulting in the highest oil recovery for the chosen core size is 3cc/min. It's highly encouraged that the critical displacement rate is maintained to prevent the development of slug fingers.In summary, an optimum Surfactant flow rate is required for better performance of a Surfactant flooding.

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 562 ◽  
Author(s):  
Shuang Liang ◽  
Yikun Liu ◽  
Shaoquan Hu ◽  
Anqi Shen ◽  
Qiannan Yu ◽  
...  

With the rapid growth of energy consumption, enhanced oil recovery (EOR) methods are continually emerging, the most effective and widely used was polymer flooding. However, the shortcomings were gradually exposed. A novel decorated polyacrylamide might be a better alternative than polymer. In this work, the molecular structure and the properties reflecting the viscosity of decorated polyacrylamide, interfacial tension, and emulsification were examined. In order to better understand the interactions between decorated polyacrylamide and oil as well as the displacement mechanism, the displacement experiment were conducted in the etched-glass microscale model. Moreover, the coreflooding comparison experiments between decorated polyacrylamide and polymer were performed to investigate the displacement effect. The statistical analysis showed that the decorated polyacrylamide has excellent characteristics of salt tolerance, viscosity stability, and viscosification like polymer. Besides, the ability to reduce the interfacial tension in order 10−1 and emulsification, which were more similar to surfactant. Therefore, the decorated polyacrylamide was a multifunctional polymer. The displacement process captured by camera illustrated that the decorated polyacrylamide flooded oil mainly by means of ‘pull and drag’, ‘entrainment’, and ‘bridging’, based on the mechanism of viscosifying, emulsifying, and viscoelasticity. The results of the coreflooding experiment indicated that the recovery of decorated polyacrylamide can be improved by approximately 11–16% after water flooding when the concentration was more than 800 mg/L, which was higher than that of conventional polymer flooding. It should be mentioned that a new injection mode of ‘concentration reduction multi-slug’ was first proposed, and it obtained an exciting result of increasing oil production and decreasing water-cut, the effect of conformance control was more significant.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ru-Sen Feng ◽  
Yong-Jun Guo ◽  
Xin-Min Zhang ◽  
Jun Hu ◽  
Hua-Bing Li

Hydrophobically modified associating polyacrylamide (HAPAM) has good compatibility with the Daqing heavy alkylbenzene sulfonate surfactant. The HAPAM alkali/surfactant/polymer (ASP) system can generate ultralow interfacial tension in a wide range of alkali/surfactant concentrations and maintain stable viscosity and interfacial tension for 120 days. The HAPAM ASP system has good injectivity for the Daqing class II reservoirs (100–300 × 10−3 μm2) and can improve oil recovery by more than 25% on top of water flooding. In the presence of both the alkali and the surfactant, the surfactant interacts with the associating groups of the polymer to form more micelles, which can significantly enhance the viscosity of the ASP system. Compared with using HPAM (Mw = 2.5 MDa), using HAPAM can reduce the polymer use by more than 40%.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hong-sheng Liu ◽  
Jing-qin Wang ◽  
Li Yang ◽  
Dong-yang Jiang ◽  
Chang-sen Lv ◽  
...  

In order to study the effects of oil displacement by a foam system of ultralow interfacial tension, the interfacial activities and foam properties of a nonionic gemini surfactant (DWS) were investigated under Daqing Oilfield reservoir conditions. Injection methods and alternate cycle of the foam system were discussed here on the basis of results from core flow experiments. It was obtained that the surface tension of DWS was approximately 25 mN/m, and ultralow interfacial tension was reached between oil and DWS with a surfactant concentration between 0.05wt% and 0.4wt%. The binary system showed splendid foam performances, and the preferential surfactant concentration was 0.3wt% with a polymer concentration of 0.2wt%. When gas and liquid were injected simultaneously, flow control capability of the foam reached its peak at the gas-liquid ratio of 3 : 1. Enhanced oil recovery factor of the binary foam system exceeded 10% in a parallel natural cores displacement after polymer flooding.


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Xiang'an Yue ◽  
Jirui Zou ◽  
Lijuan Zhang ◽  
Kang Tang

Abstract In this study, a visualized physical model of artificial oil film was firstly designed to investigate the oil film displacement mechanisms. Numerous comparative experiments were conducted to explore the detachment mechanisms of oil film and oil recovery performances in different fluid mediums with flow rate. In addition, the of influencing factors of oil film were comprehensively evaluated, which mainly includes: flow rate, surfactant behaviors, and crude oil viscosity. The results show that, (1) regardless of the viscosity of crude oil, flow rate presents a limited contribution to the detachment of oil film and the maximum of ultimate oil film displacement efficiency is only approximately 10%; (2) surfactant flooding has a synergistic effect on the oil film displacement on two aspects of interfacial tension (ITF) reduction and emulsifying capacity. Giving the most outstanding performance for two oil samples in all runs, IFT reduction of ultra-low value is not the only decisive factor affecting oil film displacement efficiency, but the emulsifying capability plays the key role to the detachment of oil film due to effect of emulsifying and dispersing on oil film; (3) the increasing flow rate of surfactant flooding is able to enhance the detachment of oil film but has an objective effect on the final oil film displacement efficiency; (4) flow rate have the much influence on the detachment of oil film, but the most easily controlled factor is the surfactant property. The finding provides basis for oil film detachment and surfactant selection EOR application.


2017 ◽  
Vol 890 ◽  
pp. 235-238 ◽  
Author(s):  
Chitipat Chuaicham ◽  
Kreangkrai Maneeintr

To enhance oil recovery, surfactant flooding is one of the techniques used to reduce the interfacial tension (IFT) between displacing and displaced phases in order to maximize productivity. Due to high salinity of crude oil in the North of Thailand, surfactant flooding is a suitable choice to perform enhanced oil recovery. The objective of this work is to measure the IFT and observe the effects of parameters such as pressure, temperature, concentration and salinity on IFT reduction. In this study, sodium dodecylbenzenesulfonate is used as surfactant to reduce IFT. The results show that the major factor affecting reduction of IFT is surfactant concentration accounting for 98.1%. IFT reduces with the increase of salinity up to 86.3% and up to 9.6% for temperature. However, pressure has less effect on IFT reduction. The results of this work can apply to increase oil production in the oilfield in the North of Thailand.


2019 ◽  
Vol 35 (2) ◽  
pp. 571-576
Author(s):  
Ahmed Sony ◽  
Hamdan Suhaimi ◽  
Laili Che Rose

A group of chemicals known as surfactants are widely used in industries. Their presence in any formulation, albeit little, exhibited superior functionality of the end-products. The dual hydrophobic and hydrophilic moiety of the structure have been shown to be responsible for reduction of surface/ interfacial tension and formation of micelles. In this work, a chemical flooding method using sodium dodecyl sulphate, SDS and its mixture with gum arabic, were carried out to study the recovery and efficiency of extracting the residual oil from the oil reservoirs. Two sets of experiments namely SDS and its mixture with gum arabic flooding at concentrations of SDS between 0.1-0.6 percent by weight are conducted. The percentage of gum arabic used is 16 percent by weight. Results shows that the use of SDS-Gum arabic flooding method yielded higher extraction of oil about 4.0 percent compared to SDS flooding. This suggests that the use of SDS and gum Arabic mixture is more efficient in increasing the amount of oil recovery.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3988 ◽  
Author(s):  
Omid Haghighi ◽  
Ghasem Zargar ◽  
Abbas Khaksar Manshad ◽  
Muhammad Ali ◽  
Mohammad Takassi ◽  
...  

Production from mature oil reservoirs can be optimized by using the surfactant flooding technique. This can be achieved by reducing oil and water interfacial tension (IFT) and modifying wettability to hydrophilic conditions. In this study, a novel green non-ionic surfactant (dodecanoyl-glucosamine surfactant) was synthesized and used to modify the wettability of carbonate reservoirs to hydrophilic conditions as well as to decrease the IFT of hydrophobic oil–water systems. The synthesized non-ionic surfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and chemical shift nuclear magnetic resonance (HNMR) analyses. Further pH, turbidity, density, and conductivity were investigated to measure the critical micelle concentration (CMC) of surfactant solutions. The result shows that this surfactant alters wettability from 148.93° to 65.54° and IFT from 30 to 14 dynes/cm. Core-flooding results have shown that oil recovery was increased from 40% (by water flooding) to 59% (by surfactant flooding). In addition, it is identified that this novel non-ionic surfactant can be used in CO2 storage applications due to its ability to alter the hydrophobicity into hydrophilicity of the reservoir rocks.


2021 ◽  
Author(s):  
Olaitan Akinyele ◽  
Karl D. Stephen

Abstract Numerical simulation of surfactant flooding using conventional reservoir simulation models can lead to unreliable forecasts and bad decisions due to the appearance of numerical effects. The simulations give approximate solutions to systems of nonlinear partial differential equations describing the physical behavior of surfactant flooding by combining multiphase flow in porous media with surfactant transport. The approximations are made by discretization of time and space which can lead to spurious pulses or deviations in the model outcome. In this work, the black oil model was simulated using the decoupled implicit method for various conditions of reservoir scale models to investigate behaviour in comparison with the analytical solution obtained from fractional flow theory. We investigated changes to cell size and time step as well as the properties of the surfactant and how it affects miscibility and flow. The main aim of this study was to understand pulse like behavior that has been observed in the water bank to identify cause and associated conditions. We report for the first time that the pulses occur in association with the simulated surfactant water flood front and are induced by a sharp change in relative permeability as the interfacial tension changes. Pulses are diminished when the adsorption rate was within the value of 0.0002kg/kg to 0.0005kg/kg. The pulses are absent for high resolution model of 5000 cells in x direction with a typical cell size as used in well-scale models. The growth or damping of these pulses may vary from case to case but in this instance was a result of the combined impact of relative mobility, numerical dispersion, interfacial tension and miscibility. Oil recovery under the numerical problems reduced the performance of the flood, due to large amounts of pulses produced. Thus, it is important to improve existing models and use appropriate guidelines to stop oscillations and remove errors.


2013 ◽  
Vol 275-277 ◽  
pp. 496-501
Author(s):  
Fu Qing Yuan ◽  
Zhen Quan Li

According to the geological parameters of Shengli Oilfield, sweep efficiency of chemical flooding was analyzed according to injection volume, injection-production parameters of polymer flooding or surfactant-polymer compound flooding. The orthogonal design method was employed to select the important factors influencing on expanding sweep efficiency by chemical flooding. Numerical simulation method was utilized to analyze oil recovery and sweep efficiency of different flooding methods, such as water flooding, polymer flooding and surfactant-polymer compound flooding. Finally, two easy calculation models were established to calculate the expanding degree of sweep efficiency by polymer flooding or SP compound flooding than water flooding. The models were presented as the relationships between geological parameters, such as effective thickness, oil viscosity, porosity and permeability, and fluid parameters, such as polymer-solution viscosity and oil-water interfacial tension. The precision of the two models was high enough to predict sweep efficiency of polymer flooding or SP compound flooding.


Sign in / Sign up

Export Citation Format

Share Document