scholarly journals Osseointegration of retrieved 3D-printed, off-the-shelf acetabular implants

2021 ◽  
Vol 10 (7) ◽  
pp. 388-400
Author(s):  
Lorenzo Dall’Ava ◽  
Harry Hothi ◽  
Johann Henckel ◽  
Anna Di Laura ◽  
Roberto Tirabosco ◽  
...  

Aims The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants. Methods We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method. Results The two groups were matched for patient sex, age (61 and 63 years), time to revision (30 and 41 months), implant size (54 mm and 52 mm), and porosity (72% and 60%) (p > 0.152). There was no difference in visual bony attachment (p = 0.209). Histological analysis showed greater bone ingrowth in 3D-printed implants (p < 0.001), with mean bone attachment of 63% (SD 28%) and 37% (SD 20%), respectively. This was observed for all the outcome measures. Conclusion This was the first study to investigate osseointegration in retrieved 3D-printed acetabular implants. Greater bone ingrowth was found in 3D-printed implants, suggesting that better osseointegration can be achieved. However, the influence of specific surgeon, implant, and patient factors needs to be considered. Cite this article: Bone Joint Res 2021;10(7):388–400.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Claus Moseke ◽  
Katharina Wimmer ◽  
Markus Meininger ◽  
Julia Zerweck ◽  
Cornelia Wolf-Brandstetter ◽  
...  

AbstractTo develop implants with improved bone ingrowth, titanium substrates were coated with homogeneous and dense struvite (MgNH4PO4·6H2O) layers by means of electrochemically assisted deposition. Strontium nitrate was added to the coating electrolyte in various concentrations, in order to fabricate Sr-doped struvite coatings with Sr loading ranging from 10.6 to 115 μg/cm2. It was expected and observed that osteoclast activity surrounding the implant was inhibited. The cytocompatibility of the coatings and the effect of Sr-ions in different concentrations on osteoclast formation were analyzed in vitro. Osteoclast differentiation was elucidated on morphological, biochemical as well as on gene expression level. It could be shown that moderate concentrations of Sr2+ had an inhibitory effect on osteoclast formation, while the growth of osteoblastic cells was not negatively influenced compared to pure struvite surfaces. In summary, the electrochemically deposited Sr-doped struvite coatings are a promising approach to improve bone implant ingrowth.


2016 ◽  
Vol 30 ◽  
pp. 357-367 ◽  
Author(s):  
Furqan A. Shah ◽  
Anders Snis ◽  
Aleksandar Matic ◽  
Peter Thomsen ◽  
Anders Palmquist

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jun Fu ◽  
Yi Xiang ◽  
Ming Ni ◽  
Xiaojuan Qu ◽  
Yonggang Zhou ◽  
...  

Background and Purpose. This study established an animal model of the acetabular bone defect in swine and evaluated the bone ingrowth, biomechanics, and matching degree of the individualized three-dimensional (3D) printed porous augment. Methods. As an acetabular bone defect model created in Bama miniswine, an augment individually fabricated by 3D print technique with Ti6Al4V powders was implanted to repair the defect. Nine swine were divided into three groups, including the immediate biomechanics group, 12-week biomechanics group, and 12-week histological group. The inner structural parameters of the 3D printed porous augment were measured by scanning electron microscopy (SEM), including porosity, pore size, and trabecular diameter. The matching degree between the postoperative augment and the designed augment was assessed by CT scanning and 3D reconstruction. In addition, biomechanical properties, such as stiffness, compressive strength, and the elastic modulus of the 3D printed porous augment, were measured by means of a mechanical testing machine. Moreover, bone ingrowth and implant osseointegration were histomorphometrically assessed. Results. In terms of the inner structural parameters of the 3D printed porous augment, the porosity was 55.48 ± 0.61 % , pore size 319.23 ± 25.05   μ m , and trabecular diameter 240.10 ± 23.50   μ m . Biomechanically, the stiffness was 21464.60 ± 1091.69   N / mm , compressive strength 231.10 ± 11.77   MPa , and elastic modulus 5.35 ± 0.23   GPa , respectively. Furthermore, the matching extent between the postoperative augment and the designed one was up to 91.40 ± 2.83 % . Besides, the maximal shear strength of the 3D printed augment was 929.46 ± 295.99   N immediately after implantation, whereas the strength was 1521.93 ± 98.38   N 12 weeks after surgery ( p = 0.0302 ). The bone mineral apposition rate (μm per day) 12 weeks post operation was 3.77 ± 0.93   μ m / d . The percentage bone volume of new bone was 22.30 ± 4.51 % 12 weeks after surgery. Conclusion. The 3D printed porous Ti6Al4V augment designed in this study was well biocompatible with bone tissue, possessed proper biomechanical features, and was anatomically well matched with the defect bone. Therefore, the 3D printed porous Ti6Al4V augment possesses great potential as an alternative for individualized treatment of severe acetabular bone defects.


2021 ◽  
Author(s):  
Guangqian Shang ◽  
Shuai Xiang ◽  
Cuicui Guo ◽  
Jianjun Guo ◽  
Peng Wang ◽  
...  

Abstract Background: Revision total hip arthroplasty (THA) has been a challenge for surgeons. The purpose of this study was to explore the short-to mid-term clinical and radiological outcomes of Chinese patients who underwent revision THA using a new off-the-shelf three-dimensional (3D)-printed trabecular titanium (TT) acetabular cup by comparison with a conventional porous coated titanium acetabular cup, to provide a reference for the recommendation of this prostheses.Methods: A retrospective analysis of 57 patients (57 hips) who received revision THA was performed from January 2016 to June 2019. A total of 23 patients received 3D-printed cups (observation group) and 34 patients received non-3D-printed cups (control group). Clinical scores including Visual Analogue Scale (VAS), Harris Hip Score (HHS) and Short Form 36 (SF-36), upward movement of the hip center of rotation(HCOR)and limb-length discrepancy (LLD), stabilization and bone ingrowth of cups were compared between two groups. The multivariate linear regression was used to determine the factors potentially influencing the HHS score. Postoperative complications in the two groups were also recorded. Results: All 57 patients were routinely followed up. The average follow-up durations in the control and observation groups were 43.57 ± 13.68 (24–65) months and 41.82 ± 11.44 (24–64) months, respectively (p = 0.618). The postoperative clinical scores significantly improved in both groups compared to the preoperative scores (p < 0.05). The VAS score did not significantly differ between the groups at 3 or 12 months postoperatively, or at the last follow-up (p > 0.05). The HHS and SF-36 scores did not significantly differ between the groups at 3 months postoperatively (p > 0.05) but differed at 12 months postoperatively and the last follow-up (p < 0.05). Compared with the control group, the postoperative recovery of HCOR and LLD was better in the observation group (p < 0.05). All cups remained stable, with no loosening throughout the follow-up period. But the observation group had a significantly better rate of bone ingrowth compared to the control group (p = 0.037). Multivariate linear regression analysis showed that different cup types, upward movement of the HCOR, and LLD influenced the HHS score at the last follow-up (p < 0.05). None of the patients exhibited severe postoperative complications.Conclusion: The new off-the-shelf 3D-printed TT acetabular cup demonstrated encouraging short-to mid-term clinical outcomes in Chinese patients. It can effectively relieve pain, improve hip function, provide satisfactory biological fixation and high survival rate. But further follow up is necessary to assess its long-term outcomes.


2007 ◽  
Vol 27 (3) ◽  
pp. 382-393 ◽  
Author(s):  
Paul A. Clark ◽  
Andrew M. Clark ◽  
Anthony Rodriguez ◽  
Mohammad A. Hussain ◽  
Jeremy J. Mao

2018 ◽  
Vol 6 (15) ◽  
pp. 2274-2288 ◽  
Author(s):  
Xiao-Fan Hu ◽  
Ya-Fei Feng ◽  
Geng Xiang ◽  
Wei Lei ◽  
Lin Wang

PLGA-coating on 3D-printed porous titanium implants promoted the angiogenesis and osteointegration at bone-implant interface in diabetes by releasing lactic acid.


2018 ◽  
Vol 62 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Kevan J. Salimian ◽  
Roghayeh Fazeli ◽  
Gang Zheng ◽  
David Ettinger ◽  
Zahra Maleki

Objectives: We analyzed the morphologic features and clinical characteristics of lung adenocarcinomas (ACAs) harboring mutated BRAF. Study Design: A review of the histology/cytology of BRAF-mutated lung ACAs was performed at the Johns Hopkins Hospital from January 1, 2013, to January 1, 2015. Patient demographics, clinical history, and ACA morphology were assessed. Results: Thirty-six cases were identified with a median age of 66 years (range 44-87), 58% (21/36) were female, and 94% (34/36) were current or former smokers. In total, 28% (10/36) had a BRAF-V600E mutation. Concurrent mutations were identified in KRAS in 4 cases (11%), PIK3CA in 2 cases (6%), and AKT1 in 2 cases (6%). No cases tested for ALK rearrangement were positive. The tumor grading varied from well to poorly differentiated, and the architecture assumed various patterns, including papillary, micropapillary, solid/cribriform, lepidic, and acinar. Of the cases with immunostains, 90% (18/20) were TTF-1 positive, 88% (14/16) were napsin-A positive, and 100% (8/8) were P63 negative. Conclusion: Mutated-BRAF lung ACA arose on average in the seventh decade of life in patients who were current or former smokers and was infrequently found in combination with other common lung ACA driver mutations. The actionable V600E mutation was present in <30% of cases, more commonly in females. The histologic grade and architecture of these tumors varied significantly.


2019 ◽  
Vol 10 (1) ◽  
pp. 175
Author(s):  
Alex J. Deakyne ◽  
Tinen L. Iles ◽  
Alexander R. Mattson ◽  
Paul A. Iaizzo

Data relative to anatomical measurements, spatial relationships, and device–tissue interaction are invaluable to medical device designers. However, obtaining these datasets from a wide range of anatomical specimens can be difficult and time consuming, forcing designers to make decisions on the requisite shapes and sizes of a device from a restricted number of specimens. The Visible Heart® Laboratories have a unique library of over 500 perfusion-fixed human cardiac specimens from organ donors whose hearts (and or lungs) were not deemed viable for transplantation. These hearts encompass a wide variety of pathologies, patient demographics, surgical repairs, and/or interventional procedures. Further, these specimens are an important resource for anatomical study, and their utility may be augmented via generation of 3D computational anatomical models, i.e., from obtained post-fixation magnetic resonance imaging (MRI) scans. In order to optimize device designs and procedural developments, computer generated models of medical devices and delivery tools can be computationally positioned within any of the generated anatomical models. The resulting co-registered 3D models can be 3D printed and analyzed to better understand relative interfaces between a specific device and cardiac tissues within a large number of diverse cardiac specimens that would be otherwise unattainable.


2020 ◽  
Vol 21 (23) ◽  
pp. 9205
Author(s):  
Ming-Jun Li ◽  
Pei-Ching Kung ◽  
Yuan-Wei Chang ◽  
Nien-Ti Tsou

(1) Background: Our aim is to reveal the influence of the geometry designs on biophysical stimuli and healing patterns. The design guidelines for dental implants can then be provided. (2) Methods: A two-dimensional axisymmetric finite element model was developed based on mechano-regulatory algorithm. The history of tissue differentiation around eight selected implants can be predicted. The performance of the implants was evaluated by bone area (BA), bone-implant contact (BIC); (3) Results: The predicted healing patterns have very good agreement with the experimental observation. Many features observed in literature, such as soft tissues covering on the bone-implant interface; crestal bone loss; the location of bone resorption bumps, were reproduced by the model and explained by analyzing the solid and fluid biophysical stimuli and (4) Conclusions: The results suggested the suitable depth, the steeper slope of the upper flanks, and flat roots of healing chambers can improve the bone ingrowth and osseointegration. The mechanism related to solid and fluid biophysical stimuli were revealed. In addition, the model developed here is efficient, accurate and ready to extend to any geometry of dental implants. It has potential to be used as a clinical application for instant prediction/evaluation of the performance of dental implants.


Sign in / Sign up

Export Citation Format

Share Document