CO2 Emissions by Agricultural Machines in South Korea

2018 ◽  
Vol 34 (2) ◽  
pp. 311-315 ◽  
Author(s):  
C S Shin ◽  
K U Kim

Abstract.The burning of fossil fuels and the resulting CO2 emissions are related to climate change and global warming. In order to help meet international goals of preventing irreversible climate change, South Korea must reduce its gross CO2 emission level from its 2015 level of 680 Mt. Knowing current sources of CO2 productions is essential for accomplishing this reduction. This study calculated the level of CO2 emissions by agricultural tractors, heaters, and dryers which are accounted for consuming 88.6% of the tax-free fuels allocated for agricultural use in South Korea. After the amount of fuel and electricity consumed by each machine was determined, CO2 emissions from each were estimated using the combustion equations. The total annual amount of CO2 emissions produced by these agricultural machines was estimated to be 4,334.2 kt which is less than 1% of the gross CO2 emissions in South Korea in 2015. Keywords: Agricultural dryer, Agricultural heater, Agricultural tractor, CO2 emissions.

revistapuce ◽  
2019 ◽  
Author(s):  
Fander Falconí ◽  
Rafael Burbano ◽  
Pedro Cango ◽  
Jesús Ramos-Martín

The rate of CO2 emissions concentration in the atmosphere increasesthe likelihood of significant impacts on humankind and ecosystems. Theassumption that permissible levels of greenhouse gas emissions cannot exceed the global average temperature increase of 2 ºC in relation to pre-industrial levels remains uncertain. Despite this uncertainty, the direct implication is that enormous quantities of fossil fuels have, thus far, wrongly been counted as assets by hydrocarbon firms as they cannotbe exploited if we want to keep climate under certain control. These are the socalled “toxic assets”. Due to the relationship among CO2 emissions, GDP, energy consumption, and energy efficiency, the concept of toxic assets can be transferred to toxic income, which is the income level that would generate levels of CO2 emissions incompatible with keeping climate change under control. This research, using a simulation model based on country-based econometric models, estimated a threshold for income per capita above which the temperature limit of 2 ºC would be surpassed. Under the business as usual scenario, average per capita income would be $14,208 (in constant 2010 USD) in 2033; and underthe intervention scenario, which reflects the commitments of the COP21 meeting held in Paris in December 2015, the toxic revenue would be $13,433 (in constant 2010 USD) in 2036.


2012 ◽  
Vol 16 (3) ◽  
pp. 655-668 ◽  
Author(s):  
Filip Johnsson ◽  
Jan Kjärstad ◽  
Mikael Odenberger

The CO2 capture and storage (CCS) technology is since more than ten years considered one of the key options for the future climate change mitigation. This paper discusses the implications for the further development of CCS, particularly with respect to climate change policy in an international geopolitics context. The rationale for developing CCS should be the over-abundance of fossil fuel reserves (and resources) in a climate change context. From a geopolitical point, it can be argued that the most important outcome from the successful commercialisation of CCS will be that fossil fuel-dependent economies with large fossil fuel resources will find it easier to comply with stringent greenhouse gas (GHG) reduction targets (i.e. to attach a price to CO2 emissions). This should be of great importance since, from a geopolitical view, the curbing on GHG emissions cannot be isolated from security of supply and economic competition between regions. Thus, successful application of CCS may moderate geopolitical risks related to regional differences in the possibilities and thereby willingness to comply with large emission cuts. In Europe, application of CCS will enhance security of supply by fuel diversification from continued use of coal, especially domestic lignite. Introduction of CCS will also make possible negative emissions when using biomass as a fuel, i.e. in so called Biomass Energy CCS (BECCS). Yet, the development of BECCS relies on the successful development of fossil fuelled CCS since BECCS in itself is unlikely to be sufficient for establishing a cost efficient CCS infrastructure for transport and storage and because BECCS does not solve the problem with the abundant resources of fossil fuels. Results from research and development of capture, transport and storage of CO2 indicate that the barriers for commercialization of CCS should not be technical. Instead, the main barriers for implementation of CCS seem to be how to reach public acceptance, to reduce cost and to establish a high enough price on CO2 emissions. Failure to implement CCS will require that the global community, including Europe, agrees to almost immediately to start phasing out the use of fossil fuels, an agreement which seems rather unlikely, especially considering the abundant coal reserves in developing economies such as China and India.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3321
Author(s):  
Nikolaos Koukouzas ◽  
Pavlos Tyrologou ◽  
Dimitris Karapanos ◽  
Júlio Carneiro ◽  
Pedro Pereira ◽  
...  

In West Macedonia (Greece), CO2 accounts as one of the largest contributors of greenhouse gas emissions related to the activity of the regional coal power plants located in Ptolemaida. The necessity to mitigate CO2 emissions to prevent climate change under the Paris Agreement's framework remains an ongoing and demanding challenge. It requires implementing crucial environmentally sustainable technologies to provide balanced solutions between the short-term needs for dependency on fossil fuels and the requirements to move towards the energy transition era. The challenge to utilise and store CO2 emissions will require actions aiming to contribute to a Europe-wide CCUS infrastructure. The Horizon 2020 European Project "STRATEGY CCUS "examines the potential for CO2 storage in the Mesohellenic Trough from past available data deploying the USDOE methodology. Research results show that CO2 storage capacities for the Pentalofos and Eptachori geological formations of the Mesohellenic Trough are estimated at 1.02 and 0.13 Gt, respectively, thus providing the potential for the implementation of a promising method for reducing CO2 emissions in Greece. A certain storage potential also applies to the Grevena sub-basin, offering the opportunity to store any captured CO2 in the area, including other remote regions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8461
Author(s):  
Chung Hong Tan ◽  
Mei Yin Ong ◽  
Saifuddin M. Nomanbhay ◽  
Abd Halim Shamsuddin ◽  
Pau Loke Show

The rapid spread of coronavirus disease 2019 (COVID-19) in early 2020 prompted a global lockdown from March to July 2020. Due to strict lockdown measures, many countries experienced economic downturns, negatively affecting many industries including energy, manufacturing, agriculture, finance, healthcare, food, education, tourism, and sports. Despite this, the COVID-19 pandemic provided a rare opportunity to observe the impacts of worldwide lockdown on global carbon dioxide (CO2) emissions and climate change. Being the main greenhouse gas responsible for rising global surface temperature, CO2 is released to the atmosphere primarily by burning fossil fuels. Compared to 2019, CO2 emissions for the world and Malaysia decreased significantly by 4.02% (−1365.83 MtCO2) and 9.7% (−225.97 MtCO2) in 2020. However, this is insufficient to cause long-term impacts on global CO2 levels and climate change. Therefore, in this review, we explored the effects of worldwide lockdown on global CO2 levels, the impacts of national lockdown on Malaysia’s CO2 emissions, and the influence of climate change in Malaysia.


Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1330-1333 ◽  
Author(s):  
Steven J. Davis ◽  
Ken Caldeira ◽  
H. Damon Matthews

Slowing climate change requires overcoming inertia in political, technological, and geophysical systems. Of these, only geophysical warming commitment has been quantified. We estimated the commitment to future emissions and warming represented by existing carbon dioxide–emitting devices. We calculated cumulative future emissions of 496 (282 to 701 in lower- and upper-bounding scenarios) gigatonnes of CO2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1° to 1.4°C) above the pre-industrial era and atmospheric concentrations of CO2 less than 430 parts per million. Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO2-emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives.


2019 ◽  
Vol 11 (8) ◽  
pp. 2448
Author(s):  
Fander Falconí ◽  
Rafael Burbano ◽  
Jesus Ramos-Martin ◽  
Pedro Cango

The rate of CO2 emissions concentration in the atmosphere increases the likelihood of significant impacts on humankind and ecosystems. The assumption that permissible levels of greenhouse gas emissions cannot exceed the global average temperature increase of 2 °C in relation to pre-industrial levels remains uncertain. Despite this uncertainty, the direct implication is that enormous quantities of fossil fuels have, thus far, wrongly been counted as assets by hydrocarbon firms as they cannot be exploited if we want to keep climate under certain control. These are the so-called “toxic assets”. Due to the relationship among CO2 emissions, GDP, energy consumption, and energy efficiency, the concept of toxic assets can be transferred to toxic income, which is the income level that would generate levels of CO2 emissions incompatible with keeping climate change under control. This research, using a simulation model based on country-based econometric models, estimated a threshold for income per capita above which the temperature limit of 2 °C would be surpassed. Under the business as usual scenario, average per capita income would be $14,208 (in constant 2010 USD) in 2033; and under the intervention scenario, which reflects the commitments of the COP21 meeting held in Paris in December 2015, the toxic revenue would be $13,433 (in constant 2010 USD) in 2036.


1969 ◽  
Vol 20 ◽  
pp. 19-22 ◽  
Author(s):  
Anders Mathiesen ◽  
Lars Henrik Nielsen ◽  
Torben Bidstrup

Concerns about climate change have led to increased interest in geothermal energy as one way of reducing the consumption of fossil fuels and thus limit CO2 emissions. Use of geothermal energy is based on well-established technologies, a high degree of security of supply, and little visual or noise inconvenience. More than one hundred plants have been established in Europe.


Author(s):  
Anita Rønne

Increasing focus on sustainable societies and ‘smart cities’ due to emphasis on mitigation of climate change is simultaneous with ‘smart regulation’ reaching the forefront of the political agenda. Consequently, the energy sector and its regulation are undergoing significant innovation and change. Energy innovations include transition from fossil fuels to more renewable energy sources and application of new computer technology, interactively matching production with consumer demand. Smart cities are growing and projects are being initiated for development of urban areas and energy systems. Analysis from ‘Smart Cities Accelerator’, developed under the EU Interreg funding programme that includes Climate-KIC,——provides background for the focus on a smart energy system. Analysis ensures the energy supply systems support the integration of renewables with the need for new technologies and investments. ‘Smart’ is trendy, but when becoming ‘smart’ leads to motivation that is an important step towards mitigating climate change.


2021 ◽  
Vol 13 (12) ◽  
pp. 6965
Author(s):  
In-Gyum Kim ◽  
Hye-Min Kim ◽  
Dae-Geun Lee ◽  
Byunghwan Lim ◽  
Hee-Choon Lee

Meteorological information at an arrival airport is one of the primary variables used to determine refueling of discretionary fuel. This study evaluated the economic value of terminal aerodrome forecasts (TAF), which has not been previously quantitatively analyzed in Korea. The analysis data included 374,716 international flights that arrived at Incheon airport during 2017–2019. A cost–loss model was used for the analysis, which is a methodology to evaluate forecast value by considering the cost and loss that users can expect, considering the decision-making result based on forecast utilization. The value was divided in terms of improving fuel efficiency and reducing CO2 emissions. The results of the analysis indicate that the annual average TAF value for Incheon Airport was approximately 2.2 M–20.1 M USD under two hypothetical rules of refueling of discretionary fuel. This value is up to 26.2% higher than the total budget of 16.3 M USD set for the production of aviation meteorological forecasts by the Korea Meteorological Administration (KMA). Further, it is up to 10 times greater than the 2 M USD spent on aviation meteorological information fees collected by the KMA in 2018.


Sign in / Sign up

Export Citation Format

Share Document