scholarly journals The tolerance of oil palm (Elaeis guineensis) seedlings to Al stress is enhanced by citric acid and natural peat water

2020 ◽  
Vol 21 (10) ◽  
Author(s):  
Agus Nur Hidayah ◽  
Sudirman Yahya ◽  
Didy Sopandie

Abstract. Hidayah AN, Yahya S, Sopandie D. 2020. The tolerance of oil palm (Elaeis guineensis) seedlings to Al stress is enhanced by citric acid and natural peat water. Biodiversitas 21: 4850-4858. Management technology on soil containing high levels of Aluminum (Al) toxicity is still needed to be developed so that the growth and development of plants will be optimum. The aims of the research were to investigate the response of oil palm seedlings (Elaeis guineensis Jacq.) toward aluminum stress, and to evaluate the effects of several exogenous compounds to improve the tolerance of oil palm. The research was conducted from September 2018 to March 2019 at PT Gunung Sejahtera Ibu Pertiwi, Central Kalimantan. This research consisted of two nutrient culture experiments, namely: Al toxicity on oil palms seedlings and the role of various exogenous compounds to improve plant tolerances. The results revealed that the solution at concentrations of 400 μM, 800 μM, and 1600 μM of Al significantly inhibited root growth, increased MDA levels, decreased the photosynthesis rate, activity of CAT and APX. Therefore, a solution at concentration of 400 μM of Al can be used as the selection level of Al tolerant oil palm varieties on nutrient culture. Ethephon at concentrations of 25 ppm, 50 ppm, and 100 ppm inhibited root and shoot growth, increased MDA levels but reduced the photosynthesis rate, chlorophyll content, APX, and CAT activity. Addition of 25 ppm and 50 ppm of citric acid, 200 ppm and 300 ppm of peat water significantly increased root length, root dry weight, photosynthesis rate, chlorophyll content, carotenoids, CAT, and APX activities as MDA levels decreased. Addition of citric acid and peat water enabled seedlings of oil palm to improve their tolerance to Al stress on nutrient culture.  

2017 ◽  
Vol 45 (1) ◽  
pp. 43-48
Author(s):  
Tri Lestari ◽  
Trikoesoemaningtyas , ◽  
Sintho Wahyuning Ardie ◽  
Dan Didy Sopandie

The management of P nutrition can be a good solution for aluminum toxicity and P nutrient deficiency in acid soil. This study aimed to determine the role of phosphorus in improving the tolerance of sorghum to Al stress in nutrient culture. This research was conducted at green house of IPB Bogor, tissue culture laboratory in the Department of AGH IPB and Balai Besar Pasca Panen Cimanggu Bogor, from January to November 2014. A completely randomized factorial design was used in three experiments. The results revealed that addition of P improved the tolerance of two sorghum genotypes to Al stress as indicated by the reduction in root length inhibition by Al, where  P was more effective in tolerant genotype Numbu. Addition of P reduced the accumulation of Al in the root tissues as shown by the lighter intensity of hematoxylin staining, especially in Numbu. Aluminum stress increased the secretion of oxalate acid in both sorghum genotypes, where P lowered oxalate acid secretion in both genotypes. These facts showed that the role of P in improving the tolerance of sorghum to Al stress might be associated with the inhibition of Al absorption into the root tissues, although the mechanism is not yet known.Keywords: Al stress, organic acid secretion, role of P, root staining method, sorghum


2018 ◽  
Vol 64 (8) ◽  
pp. 511-526 ◽  
Author(s):  
María D. Artigas Ramírez ◽  
Jéssica D. Silva ◽  
Naoko Ohkama-Ohtsu ◽  
Tadashi Yokoyama

Aluminum (Al) toxicity is a major problem affecting soil fertility, microbial diversity, and nutrient uptake of plants. Rhizobia response and legume interaction under Al conditions are still unknown; it is important to understand how to develop and improve legume cultivation under Al stress. In this study, rhizobia response was recorded under different Al concentrations. Al effect on rhizobial cells was characterized by combination with different two pH conditions. Symbiosis process was compared between α- and β-rhizobia inoculated onto soybean varieties. Rhizobial cell numbers was decreased as Al concentration increased. However, induced Al tolerance considerably depended on rhizobia types and their origins. Accordingly, organic acid results were in correlation with growth rate and cell density which suggested that citric acid might be a positive selective force for Al tolerance and plant interaction on rhizobia. Al toxicity delayed and interrupted the plant–rhizobia interaction and the effect was more pronounced under acidic conditions. Burkholderia fungorum VTr35 significantly improved plant growth under acid–Al stress in combination with all soybean varieties. Moreover, plant genotype was an important factor to establish an effective nodulation and nitrogen fixation under Al stress. Additionally, tolerant rhizobia could be applied as an inoculant on stressful agroecosystems. Furthermore, metabolic pathways have still been unknown under Al stress.


2019 ◽  
Vol 39 (9) ◽  
pp. 1572-1582 ◽  
Author(s):  
Lei Yan ◽  
Muhammad Riaz ◽  
Yalin Liu ◽  
Yu Zeng ◽  
Cuncang Jiang

Abstract Aluminum (Al) toxicity is the main constraint of root growth and productivity on arable acidic soil. Although boron (B) is used to ameliorate Al stress, the exact mechanisms underlying the effects of B on Al-induced alteration on root metabolites are poorly understood, especially in the trifoliate orange, which is an important rootstock in China. Therefore, a hydroponics experiment was conducted to explore the mechanisms of B mitigates Al toxicity in roots of citrus by metabolomics. A total of 60 metabolites were identified and analyzed in the present study. The 17 amino acids and 8 sugars were up-regulated in Al-treated roots, mainly histidine, cycloleucine, asparagine, citrulline, raffinose and trehalose, and increased by 38.5-, 8.7-, 6.0-, 6.0-, 7.5- and 6.6-fold, respectively. Meanwhile, significant down-regulation of aspartic acid, isoleucine, glutamic acid and six sugars were indicated under Al stress. Aluminum induced a decrease of nine organic acids, especially l-malic acid, citric acid and threonic acid, by 98.2, 93.6 and 95.1%, respectively. Interestingly, in the presence of Al, B application decreased the contents of asparagine, cycloleucine, citrulline and histidine as well as myo-inositol, raffinose, galactinol and 3,6-anhydro-d-galactose by 52.2, 57.4, 46.7, 63.0, 65.4, 74.3, 62.5 and 55.0%, respectively. However, there was no obvious difference in the organic acid contents in Al-stressed roots treated with B. Conclusively, our results show that B regulates the metabolic patterns of amino acids and carbohydrates and reduces Al toxicity. Nevertheless, B addition did not affect the Al-induced changes in the metabolic modes of organic acids.


2019 ◽  
Vol 4 (3) ◽  
pp. 140
Author(s):  
Tri Utami ◽  
Eka Tarwaca Susila Putra ◽  
Tohari Tohari

The purpose of this study was to determine the response of eight oil palm hybrids through root morphological changes and growth to aluminum (Al) toxicity. The research was conducted in Sleman, Yogyakarta in June 2014 - June 2015. The study was prepared in a Factorial Randomized Block Design, with three replications as block. The first factor was was addition of aluminum in two rates (0 ppm and 300 ppm). The second factor eight oil palm hybrids (Yangambi, Avros, Langkat, PPKS 239, Simalungun, PPKS 718, PPKS 540 and Dumpy). The research was conducted at nursery stage. Observed variables include total root length, total root area, root volume, root diameter, aluminum uptake in root, fractal dimension, as well as  fresh and dry root and shoot weight. The data obtained were analyzed by variant (ANOVA) at 5% level, followed by Duncan Multiple Range Test (DMRT) to find out if there was any real difference between the treatments. Aluminum at 300 ppm can change  the morphological character of root, inhibiting root growth and biomass. All the hybrids give  the same respon  on root morphological and growth variables.


2016 ◽  
Vol 44 (3) ◽  
pp. 475-485
Author(s):  
G. Ravichandran ◽  
P. Murugesan ◽  
P. Naveen Kumar ◽  
R.K. Mathur ◽  
D. Ramajayam

Plant Omics ◽  
2017 ◽  
Vol 10 (05) ◽  
pp. 247-251 ◽  
Author(s):  
Yurnaliza ◽  
◽  
Rizkita Rachmi Esyanti ◽  
Agus Susanto ◽  
I Nyoman Pugeg Aryantha ◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 21-30
Author(s):  
Rokhana Faizah ◽  
Sri Wening ◽  
Abdul Razak Purba

Information of legitimacy of oil palm progenies is important to guaranty the quality and to control commercial seeds procedures. A true and legitimate cross will produce progeny which has a combination of their parent's allele. The information could be obtained early in the nursery stage through DNA fingerprinting analysis. Simple Sequence Repeats (SSR) is one of DNA markers used for DNA fingerprinting, since the marker system has advantages to acquire information of allele per individual in population and efficiency diverse allele of progeny and their parents. The aim of the research is to obtain legitimacy of 12 progenies analyzing in the oil palm nursery stage. Thirteen SSR markers were used to analyze 12 crossings number of oil palm. The genotypes data by alleles of SSR inferred and quantified using Gene Marker® Software version 2.4.0 Soft Genetics® LLC and analyzed based on Mendel's Law of Segregation. The result showed based on heredity pattern of progeny and their parent's allele that progenies H were indicated genetically derived from their known parents while progenies from A and G indicated as illegitimate crossing. Probability value for legitimacy of progenies of 9 other crosses has 0.031 and 0.5. Legitimacy analysis of progeny using SSR markers could be used to control the quality of crossing material and earlier selection in the oil palm nursery.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nurshafika Mohd Sakeh ◽  
Siti Nor Akmar Abdullah ◽  
Mohammad Nazri Abdul Bahari ◽  
Azzreena Mohamad Azzeme ◽  
Noor Azmi Shaharuddin ◽  
...  

Abstract Background Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. Results The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. Conclusion Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.


Sign in / Sign up

Export Citation Format

Share Document