scholarly journals Genetic diversity and morphological characteristics of native seashore paspalum in Indonesia

2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Rahayu Rahayu ◽  
Fatimah Suwardjo ◽  
Ji Bae Eun ◽  
Geun Mo Yang ◽  
Soo Choi Joon

Abstract. Rahayu, Fatimah, Bae EJ, Mo YG, Choi JS. 2020. Genetic diversity and morphological characteristics of native seashore paspalum in Indonesia. Biodiversitas 21: 4981-4989. Seashore paspalum (Paspalum vaginatum) is a warm-season turfgrass indigenous to tropical and coastal areas worldwide. The objectives of this study were to measure the genetic diversity and genetic variation of Indonesian seashore paspalum germplasm. Three turf quality, six morphological characters, and ten SSR (microsatellite) markers were used to assess genetic relationships and genetic variation among 22 germplasm resources from Indonesia and one commercial variety (Salam) from United States of America. The results showed significant variation for five morphological characters among 23 tested seashore paspalum accessions. The cluster analysis of morphological characters of 23 seashore paspalum accessions using 0,6 cut off divided into three morphological types: tall high-density, intermediate, and dwarf low-density ecotype. The genetic variation revealed 22 alleles with average number of alleles per locus was 2 and polymorphism information content (PIC) values average was 0.33. The microsatellite marker cluster analysis showed that 23 seashore paspalum accessions were grouped into two major groups, with a genetic similarity coefficient was 0,72. The low level of genetic diversity occurred among Indonesia natural grass germplasm and the genetic distance was relatively low between Indonesian germplasm and Salam variety. The genetic diversity and morphological characteristics will be useful for further study and utilization of Indonesian seashore paspalum germplasm.

2019 ◽  
Vol 144 (6) ◽  
pp. 379-386
Author(s):  
Yan Liu ◽  
Hailin Guo ◽  
Yi Wang ◽  
Jingang Shi ◽  
Dandan Li ◽  
...  

Seashore paspalum (Paspalum vaginatum) is a notable warm-season turfgrass. Certain germplasm resources are distributed in the southern regions of China. The objectives of this study were to investigate the genetic diversity and genetic variation of Chinese seashore paspalum resources. Morphological characteristics and sequence-related amplified polymorphism (SRAP) markers were used to assess genetic relationships and genetic variation among 36 germplasm resources from China and six cultivars from the United States. The results showed significant variation for 13 morphological characteristics among 42 tested seashore paspalum accessions, and that the phenotypic cv was, in turn, turf height > turf density > internode length > inflorescence density > leaf width > reproductive branch height > spikelet width > leaf length > spikelet number > inflorescence length > internode diameter > inflorescence width > spikelet length. According to the morphological characteristics and cluster analysis, 42 seashore paspalum accessions were divided into six morphological types. In total, 374 clear bands were amplified using 30 SRAP primer combinations; among these bands, 321 were polymorphic with 85.83% polymorphism. SRAP marker cluster analysis showed that 42 seashore paspalum accessions were grouped into seven major groups, with a genetic similarity coefficient ranging from 0.4385 to 0.9893 and genetic distance values ranging from 0.0108 to 0.8244. The high level of genetic diversity occurred among Chinese germplasm, and the genetic distance was relatively high between Chinese germplasm and cultivars introduced from the United States. The patterns in morphological trait variations and genetic diversity will be useful for the further exploitation and use of Chinese seashore paspalum resources.


1993 ◽  
Vol 29 (1) ◽  
pp. 87-96 ◽  
Author(s):  
J. R. Chamberlain ◽  
N. W. Galwey

SummaryGliricidia sepium is a leguminous tree native to Mexico and Central America, and is utilized for fuelwood, animal fodder and green manure in rural communities. It is widely distributed throughout the tropics, but many populations of the tree have arisen from haphazard introductions of unknown quality. Methods for determining the genetic structure and origin of populations are therefore required as a basis for genetic improvement. In order to test the effectiveness of various measures of genetic diversity, provenances of G. sepium from Panama, Guatemala, Mexico and Honduras were studied by electrophoresis of seed storage proteins and the enzymes leucine aminopeptidase (LAP) and acid phosphatase (ACP), and by measurement of plant morphological characteristics. Study of seed storage proteins and morphological characters was very informative, and there was some genetic variation for ACP, but LAP showed no clear variation. In the cases where genetic variation was present, the different methods of study showed a consistent pattern of variation: genetic diversity was greatest in the population from Honduras, and least in that from Panama. This was contrary to expectations on the basis of the locations of origin of the populations and the range in which G. sepium is believed to be native. Electrophoresis of the storage proteins of Gliricidia maculata confirmed the status of this species as a distinct taxon.


2003 ◽  
Vol 54 (5) ◽  
pp. 429 ◽  
Author(s):  
J. S. Croser ◽  
F. Ahmad ◽  
H. J. Clarke ◽  
K. H. M. Siddique

Efforts to improve the yield and quality of cultivated chickpea (Cicer arietinum L.) are constrained by a low level of intraspecific genetic diversity. Increased genetic diversity can be achieved via the hybridisation of the cultivated species with the unimproved 'wild' relatives from within the 43 species of the Cicer genus. To date, the 8 species sharing an annual growth habit and chromosome number with C. arietinum have been the primary focus of screening and introgression efforts. Screening of these species has uncovered morphological characteristics and resistance to a number of abiotic and biotic stresses that are of potential value to chickpea improvement programs. Detailed analysis of protein and DNA, karyotyping, and crossability studies have begun to elucidate the relationships between the annual Cicer species. In comparison, perennial species have received little attention due to difficulties in collection, propagation, and evaluation. This review discusses the progress towards an understanding of genetic relationships between the Cicer species, and the introgression of genes from the wild Cicer species into the cultivated species.


2021 ◽  
Vol 34 ◽  
pp. 3
Author(s):  
Yılmaz Çiftci ◽  
Oğuzhan Eroğlu ◽  
Şirin Firidin ◽  
Hacı Savaş ◽  
Yusuf Bektaş

In this study, the genetic relationships of 804 tarek (Alburnus tarichi) samples from a total of 18 populations, including the potamodromus and resident individuals from Lake Van basin in eastern Turkey, were studied by using nine microsatellite loci. A total of 93 alleles was detected, and the average number of alleles per locus was 10.3 ± 3.39. The mean estimated observed and expected heterozygosity were 0.340 ± 0.016 and 0.362 ± 0.015, respectively, which indicated a low level of polymorphism. After Bonferroni correction (P < 0.0027), the multi-locus test applied to each population revealed that 12 out of 18 populations were in Hardy-Weinberg equilibrium (HWE) (P = 0.0120–0.9981). Analysis of molecular variance (AMOVA) showed more than 76% genetic variability within individuals and 19% among populations, which was significantly higher than zero (FST = 0.19), and furthermore, a low level of genetic variation was observed among individuals within populations (4.84%: FIS = 0.06). Bayesian clustering analysis indicated that the total genetic variation grouped into 3 clusters. Additionally, the significance test results revealed that 11 of the 18 populations are threatened with extinction due to recent bottleneck events.We conclude that the tarek populations from the Lake Van basin can be classified into distinct genetic groups, based on microsatellite information. In addition, our results provide essential information for the development of a management plan that conserves the tarek's genetic diversity and achieves a sustainable fishery.


1997 ◽  
Vol 48 (7) ◽  
pp. 969 ◽  
Author(s):  
Sarita Jane Bennett

Genetic variation between and within populations of Trifolium glomeratum (cluster clover) was studied using seed collected from 2 sites in Western Australia: Mount Barker in the south and Kwelkan in the wheatbelt. Seed was collected at 64 subplots within each site and the material was grown at the University Field Station at Shenton Park, Perth. Seventeen morphological characters were scored and the results were analysed using analysis of variance, principal components analysis, and cluster analysis. Within-site variation was much greater than had previously been shown, and a considerable amount of between-site variation was present. It is suggested that within-site variation is due to a small amount of heterozygosity, as a result of limited outbreeding, being present in each population. The 2 populations are shown to be distinct from each other, with the population from Mount Barker containing more within-site variation. It is suggested that this is a result of climatic stress influencing and reducing the amount of variation being maintained in the Kwelkan population.


2018 ◽  
Vol 28 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Abbas Saidi ◽  
Zahra Daneshvar ◽  
Zohreh Hajibarat

To evaluate the genetic diversity among 10 cultivars of anthurium were performed using three molecular markers such as Start Codon Targeted (SCoT) and Conserved DNA-derived Polymorphism (CDDP), and Random Amplification of Polymorphic DNA (RAPD). Polymorphism index content (PIC) was calculated 0.39, 0.42 and 0.37 for RAPD, SCoT and CDDP, respectively. This result showed all the three molecular markers had almost an identical potential in estimating genetic diversity. Cluster analysis using SCoT, CDDP and RAPD divided the cultivars to three distinct clusters. The similarity matrix obtained through SCoT and CDDP was positively significantly correlated (r = 0.76, p < 0.01). This is the first report in which the efficiency of two targeted DNA region molecular markers (SCoT and CDDP) together with RAPD technique have been compared with each other in a set of anthurium cultivras. Results suggested that SCOT, CDDP and RAPD fingerprinting techniques are of sufficient ability to detect polymorphism in anthurium cultivars. Plant Tissue Cult. & Biotech. 28(2): 171-182, 2018 (December)


2010 ◽  
Vol 90 (4) ◽  
pp. 443-452 ◽  
Author(s):  
T. Karuppanapandian ◽  
H W Wang ◽  
T. Karuppudurai ◽  
J. Rajendhran ◽  
M. Kwon ◽  
...  

The DNA fingerprinting methodologies, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), were used to estimate genetic diversity and relationships among 20 black gram (Vigna mungo L. Hepper) varieties. Thirty selected RAPD primers amplified 255 bands, 168 of which were polymorphic (66.5%). On average, these primers produced 8.5 bands, 5.6 of which were polymorphic. Polymorphic band number varied from 2 (A-05) to 10 (OPA-02), with sizes ranging from 100 to 2550 bp. Twenty-four selected ISSR primers produced 238 amplified products, 184 of which were polymorphic (77.8%). On average, these primers generated 9.8 bands, with 7.7 polymorphic bands ranging in number from 4 (ISSR-13) to 11 (ISSR-03), and size from 100-2650 bp. Genetic relationships were estimated using similarity coefficient (Jaccard’s) values between different accession pairs; these varied from 30.7 to 85.0 for RAPD, and from 37.2 to 88.4 with ISSR. UPGMA analysis indicated that the varieties ranged in similarity from 0.50 to 1.00 (mean of 0.75) for RAPD, and from 0.47 to 1.00 (mean of 0.76) with ISSR. Cluster analysis of RAPD and ISSR results identified three clusters with significant bootstrap values, which revealed greater homology between the varieties. Principal coordinates analysis also supported this conclusion. Among the black gram varieties, WBU-108 and RBU-38 were highly divergent, whereas LBG-648 and LBG-623 were genetically similar. The markers generated by RAPD and ISSR assays can provide practical information for the management of genetic resources and these results will also provide useful information for the molecular classification and breeding of new black gram varieties.Key words: Black gram, cluster analysis, genetic diversity, ISSR, molecular markers, RAPD


1996 ◽  
Vol 26 (8) ◽  
pp. 1454-1462 ◽  
Author(s):  
Naoki Tani ◽  
Nobuhiro Tomaru ◽  
Masayuki Araki ◽  
Kihachiro Ohba

Japanese stone pine (Pinuspumila Regel) is a dominant species characteristic of alpine zones of high mountains. Eighteen natural populations of P. pumila were studied in an effort to determine the extent and distribution of genetic diversity. The extent of genetic diversity within this species was high (HT = 0.271), and the genetic differentiation among populations was also high (GST = 0.170) compared with those of other conifers. In previous studies of P. pumila in Russia, the genetic variation within the species was also high, but the genetic differentiation among populations was low. We infer that this difference originates from differences in geographic distribution and ecological differences between the two countries. The genetic variation within each population tended, as a whole, to be smaller within marginal southern populations than within northern populations. Genetic relationships among populations reflect the geographic locations, as shown by unweighted pair-group method with arithmetic means and neighbor-joining phylogenetic trees.


Caryologia ◽  
2021 ◽  
Vol 74 (2) ◽  
pp. 149-161
Author(s):  
Jing Ma ◽  
Wenyan Fan ◽  
Shujun Jiang ◽  
Xiling Yang ◽  
Wenshuai Li ◽  
...  

Genetic diversity studies are essential to understand the conservation and management of plant resources in any environment. The genus Consolida (DC.) Gray (Ranuculaceae) belongs to tribe Delphinieae. It comprises approximately 52 species, including the members of the genus Aconitella Spach. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Consolida genetic diversity. Therefore, we collected and analyzed 19 species from 12 provinces of regions. Overall, one hundred and twenty-seven plant specimens were collected. We showed significant differences in quantitative morphological characters in plant species. Unweighted pair group method with arithmetic mean and principal component analysis (PCA) divided Consolida species into two groups. All primers produced polymorphic amplicons though the extent of polymorphism varied with each primer. The primer OPA-06 was found to be most powerful and efficient as it generated a total of 24 bands of which 24 were polymorphic. The Mantel test showed correlation (r = 0.34, p=0.0002) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Consolida species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Consolida species. Our aims were 1) to assess genetic diversity among Consolida species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa.


2018 ◽  
Vol 10 (2) ◽  
pp. 245-251
Author(s):  
Weni Lestari ◽  
Jumari Jumari ◽  
Rejeki Siti Ferniah

Nepenthes spp. is a typical plant of Southeast Asia especially Indonesia which has a special leaf modification called a pitcher. The largest number of Nepenthes spp. species in Indonesia is on the island of Sumatra. The purpose of this reseach was to identify and analyze cluster Nepenthes spp. from South Sumatra based on morphological characteristics. The specimens were collected from the forest of Tekorejo Village, Air Itam Village and cultivation location in Palembang city of South Sumatra. Identification of morphological characters performed on the characteristics of root, stem, leaves, and pitcher. The morphological data is used for cluster analysis using NTSYS software version 2.02. The identification results showed 9 variants of Nepenthes spp. which belong to the species N. mirabilis, N. gracilis, and N. sumatrana. Dendogram analysis results form two main clusters with a similarity value of 22%. The first cluster consists of N. mirabilis and N. sumatrana. The second cluster consists of N. gracilis. Based on the results of this study can be concluded that the species Nepenthes spp. South Sumatra is N. mirabilis, N. gracilis, and N. sumatrana. The results of this study will be dedicated to updating information about the existence of Nepenthes spp. from South Sumatra and his cluster.


Sign in / Sign up

Export Citation Format

Share Document