Shale Resource Systems for Oil and GasPart 1—Shale-gas Resource Systems

Author(s):  
Daniel M. Jarvie
2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


2016 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Jinxian He ◽  
Xiaoli Zhang ◽  
Li Ma ◽  
Hongchen Wu ◽  
Muhammad Ashraf

<p>There are enormous resources of unconventional gas in coal measures in Ordos Basin. In order to study the geological characteristics of unconventional gas in coal Measures in Ordos Basin, we analyzed and summarized the results of previous studies. Analysis results are found that, the unconventional gas in coal measures is mainly developed in Upper Paleozoic in Eastern Ordos Basin, which including coalbed methane, shale gas and tight sandstone gas. The oil and gas show active in coal, shale and tight sandstone of Upper Paleozoic in Ordos Basin. Coalbed methane reservoir and shale gas reservoir in coal measures belong to “self-generation and self- preservation”, whereas the coal measures tight sandstone gas reservoir belongs to “allogenic and self-preservation”. The forming factors of the three different kinds of gasses reservoir are closely related and uniform. We have the concluded that it will be more scientific and reasonable that the geological reservoir-forming processes of three different kinds of unconventional gas of coal measures are studied as a whole in Ordos Basin, and at a later stage, the research on joint exploration and co-mining for the three types of gasses ought to be carried out.</p>


2013 ◽  
Vol 421 ◽  
pp. 917-921
Author(s):  
De Xun Liu ◽  
Shu Heng Tang ◽  
Hong Yan Wang ◽  
Qun Zhao

Affected by the constant development of global economy and the imbalance in distribution of conventional oil and gas, oil and gas resources can no longer meet the demand in many countries. Development of unconventional oil and gas has begun to take shape. Shale gas and tight oil become the focus of global attention. Unconventional oil and gas resources are relatively abundant in China. Preliminary results have been achieved in the development of shale gas. Tight oil has been developed in small scale, and the main technologies are maturing gradually. Yet we face many challenges. Low in work degree, resources remain uncertain. Environmental capacity is limited, and large scale batch jobs will confront with difficulties.


Author(s):  
V. T. Kryvosheyev ◽  
V. V. Makogon ◽  
Ye. Z. Ivanova

Economic hardship in Ukraine during the years of independence led to a sharp reduction of exploration work on oil and gas, a drop in hydrocarbon production, a decrease in inventories and a sharp collapse of research work to ensure the growth of hydrocarbon reserves.The hydrocarbon potential of various sources of Ukrainian subsoil is quite powerful and can provide future energy independence of the country. Potential hydrocarbon resources in traditional traps of various types are exhausted by only 25 %. Ukraine has recently experienced so-called “shale gas boom”. The experience of extraction of shale gas in desert areas of the United States can not be repeated in densely populated Ukraine in the absence of such powerful shale strata, resource base, necessary infrastructure, own technologies and techniques and economic, environmental and social risks.Taking into account the fuel and energy problems of the state, we constantly throughout the years of independence oriented the oil and gas industry and the authorities on the active use of our own reserves and opportunities for accelerated opening of new oil and gas fields.The results of geological exploration work in the old oil and gas basins at the high level of their study indicate that deposits in non-structural traps dominate among open deposits.A complex of sequence-stratigraphical, lithology-facies and lithology-paleogeographical studies is being successfully used to forecast undeformational traps in well-studied oil and gas bearing basin of the Ukraine – the Dniprovsko-Donetsky basin. The authors predict wide development of stratigraphic, lithologic, tectonic and combined traps in terrigenous sediments of Tournaisian and Visean age, reef-carbonate massifs of the lower Tournaisian, lower and middle Visean age and others. They should become the basis for exploration of oil and gas fields for the near and medium term and open the second breath of the basin.


2020 ◽  
Vol 993 ◽  
pp. 1190-1195
Author(s):  
Shang Yu Yang ◽  
Jian Jun Wang ◽  
Jia Wen Han ◽  
Hang Wang ◽  
Li Hong Han

Casing radial deformation during complex fracturing process was seriously for shale gas wells in Sichuan district of China, and the average casing deformation rate in the region is of 50%. The bridge plug, perforating gun and other tools cannot successfully pass with deformed casing. Aiming at the 3-D logging morphology for deformed casing of shale gas wells, the failure modes and mechanisms were analyzed by using elasticity and theoretical mechanics. Many factors were evaluated and integrated to achieve quantitative evaluation model including geology feature, wellbore trajectory, cement property, casing material and hydrofracture process. With the aid of the self-developed unconventional oil and gas well casing simulation test equipment, the casing bearing capacity with shear load were carried out, established the relationship between shear load value and radial deformation, and further constructed the casing failure criterion with shear force. This work can provide technical support for casing design and selection in shale gas wells.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3326
Author(s):  
M. S. Liew ◽  
Kamaluddeen Usman Danyaro ◽  
Noor Amila Wan Abdullah Zawawi

Hydraulic fracturing has made the production of gas more economical. Shale gas possesses the potential to arise as a main natural gas source worldwide. It has been assessed that the top 42 countries, including the U.S., are predicted to own 7299 trillion cubic feet (tcf) of technically recoverable shale gas resources. The main goal of this paper is to serve as a guide of different shale gas extraction methods. The significance of these methods and possible pros and cons are determined. Each technique was explained with the support of literature review. Specifically, this paper revealed that some fracking methods such as pulsed arc electrohydraulic discharges (PAED), plasma stimulation and fracturing technology (PSF), thermal (cryogenic) fracturing, enhanced bacterial methanogenesis, and heating of rock mass are at the concept stage for conventional and other unconventional resources. Thus, these found to be significant for stimulating natural gas wells, which provides very good production results. This paper also discovered that fracking remains the recommended technique used by the oil and gas industries.


2015 ◽  
Vol 3 (2) ◽  
pp. SJ1-SJ13 ◽  
Author(s):  
Shu Jiang ◽  
Jinchuan Zhang ◽  
Zhiqiang Jiang ◽  
Zhengyu Xu ◽  
Dongsheng Cai ◽  
...  

This paper describes the geology of organic-rich shales in China, their resource potentials, and properties of emerging and potential China shale gas and shale oil plays. Marine, lacustrine, and coastal swamp transitional shales were estimated to have the largest technically recoverable shale gas resource (25.08 trillion cubic meters or 886 trillion cubic feet) and 25 to 50 billion barrels of technically recoverable shale oil resource. The Precambrian Sinian Doushantuo Formation to Silurian Longmaxi black marine shales mainly accumulated in the intrashelf low to slope environments in the Yangtze Platform in South China and in the Tarim Platform in northwest China. The marine shales in the Yangtze Platform have high maturity (Ro of 1.3%–5%), high total organic carbon (mainly [Formula: see text]), high brittle-mineral content, and have been identified as emerging shale gas plays. The Lower Paleozoic marine shales in the Upper Yangtze area have the largest shale gas potential and currently top the list as exploration targets. The Carboniferous to Permian shales associated with coal and sandstones were mainly formed in transitional depositional settings in north China, northwest China, and the Yangtze Platform in south China. These transitional shales are generally rich in clay with a medium level of shale gas potential. The Middle Permian to Cenozoic organic-rich lacustrine shales interbedded with thin sandstone and carbonate beds are sporadically distributed in rifted basins across China. Their main potentials are as hybrid plays (tight and shale oil). China shales are heterogeneous across time and space, and high-quality shale reservoirs are usually positioned within transgressive systems tract to early highstand systems tract intervals that were deposited in an anoxic depositional setting. For China’s shale plays, tectonic movements have affected and disrupted the early oil and gas accumulation, making tectonically stable areas more favorable prospects for the exploration and development of shale plays.


2018 ◽  
Vol 5 (3) ◽  
pp. 236-250
Author(s):  
S. S. Zhiltsov ◽  
I. S. Zonn

This chapter considers the approaches and possibilities of exploration and use of shale gas in the countries of the former USSR. Many of them became interested in the results of the US “shale revolution” which opened the new stage in gas production. Some post-Soviet countries are eager by using shale gas to reduce their dependence on external deliveries, thus, attaining energy independence.The data on shale gas reserves in the post-Soviet countries are taken together; the preliminary results of energy policy in these countries concerning development of the shale gas deposits are presented; the first results of oil and gas company activities are analyzed.Of all post-Soviet countries, Ukraine was most active in this respect having declared about possessing the greatest shale gas reserves. Ukraine invited foreign oil and gas companies which showed interest in the shale deposits. But the shale gas production in Ukraine acquired political dimensions impeding the objective assessment of startup conditions and likely consequences of shale gas extraction for the people and natural environment. Shale gas was in the focus of attention of the authorities in Kazakhstan and Moldavia which considered this hydrocarbon resource as the significant factor for diversification of hydrocarbon supply and ensuring independence of the Russian gas. “Shale revolution” was not neglected in Russia which had to take into account the shale gas factor in the world energy balance adjusting its policy respectively. USA made attempt to push its shale contracts in Russia, thus, ensuring access to the Russian gas market. On the one hand, Russia remained indifferent to the shale boom and went on implementation of its pipeline projects, but, on the other hand, it does not waive off absolutely the potential of this hydrocarbon resource.In general, the post-Soviet countries regardless of the lack of a legislative base, technologies and unresolved environmental issues have shown certain interest in shale gas production. 


2019 ◽  
Vol 26 (1) ◽  
pp. 45-57
Author(s):  
Przemysław Drzewicz ◽  
Grzegorz Nałęcz-Jawecki ◽  
Agata Drobniewska ◽  
Anna Zgadzaj ◽  
Adam Smoliński ◽  
...  

Abstract The oil containing drilling waste is a worldwide environmental problem associated with oil and gas exploration. In Poland, the problem of the drilling waste has become important since starting of shale gas exploration. The results of thermal treatment of drilling waste from shale gas exploration are presented. It has been shown that organic content vaporized completely at temperature up to 500 °C. The main problem is high content of chloride, sulfate, sodium, potassium, magnesium in the waste and its water leachate. Toxicity tests confirmed that high salinity of the samples pose important risk for environment. Due to the high content of barium, the drilling waste may be utilized in production of cement with high chemical and heat resistance and opaque to X-ray. Thermal treatment process is a viable option for remediation of the drilling waste; however, the product of the process needs further treatment in order to remove its high salinity.


Sign in / Sign up

Export Citation Format

Share Document