scholarly journals Study on Performance of Flame Retardant and Smokeless Reed/Magnesite Cement Inorganic Particleboard

2021 ◽  
Vol 71 (3) ◽  
pp. 224-232
Author(s):  
Xia Zheng ◽  
Peiqi Li ◽  
Yunfei Lin ◽  
Xingong Li

Abstract Flame-retardant reed inorganic particleboard was prepared by hot-pressing with reed particles as a reinforcing material and using magnesite cement as an inorganic adhesive. The effects of inorganic sizing amount, density, and hot-pressing temperature and time on the properties of reed inorganic particleboard were investigated by orthogonal testing. Particleboard properties were tested and characterized by means of a universal mechanical testing machine, scanning electronic microscopy (SEM), X-ray diffraction (XRD), and cone calorimetry. The results showed that the mechanical properties of particleboard prepared under conditions of 60 percent sizing capacity, 100°C hot-pressing temperature, 15 minutes hot-pressing time, and 1.2 g/cm3 density were the best, reaching the national standard for cement particleboard. At 60 percent sizing, the characteristic peak value of inorganic adhesive hydrate crystal phase was the largest, the crystallization area dense and orderly, and the coating effect on shavings good; these attributes confirmed the trend of mechanical properties of reed shavings board increasing with sizing amount. Thus, the sizing amount had a significant influence on flame retardancy and smoke suppression performance of this particleboard. With an increased application amount, the heat release and total heat release rates of the particleboard and total smoke generation rate showed decreasing trends. Additionally, when the ignition time was delayed, the flame retardancy and smoke suppression performance of the particleboard was enhanced.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Shiming Hao ◽  
Jingpei Xie ◽  
Aiqin Wang ◽  
Wenyan Wang ◽  
Jiwen Li

AbstractThe aim of this paper was to investigate the effect of vacuum hot pressing sintering temperature, sintering time and pressure on the properties of SiCp/2024Al composites. The microstructures and mechanical properties were tested by scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and a mechanical testing machine. The results indicated that increasing hot pressing temperature decreased the number of pores and increased the density and interfacial bonding strength, and improved the mechanical properties of the composites. The composite fabricated at 580°C exhibited the optimum tensile strength, excessive hot pressing temperature easily produced micro-cracks, and the liquid aluminum extrusion and the reduction of Al


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1311-1324
Author(s):  
Yating Hua ◽  
Chungui Du ◽  
Huilong Yu ◽  
Ailian Hu ◽  
Rui Peng ◽  
...  

Flame-retardant silicate-intercalated calcium aluminum hydrotalcites (CaAl-SiO3-LDHs) were synthesized to treat bamboo for retardancy, to overcome the bamboo’s flammability and reduce the production of toxic smoke during combustion. The microstructure, elemental composition, flame retardancy, and smoke suppression characteristics of the bamboo before and after the fire-retardant treatment with different pressure impregnation were studied using a scanning electron microscope (SEM), elemental analysis (EDX), and cone calorimetry. It was found that CaAl-SiO3-LDHs flame retardants can effectively fill and cover the cell wall surface and the cell cavity of bamboo without damaging the microstructure. As compared to the non-flame-retardant bamboo, the heat release rate (HRR) of the CaAl-SiO3-LDHs flame-retardant bamboo was significantly reduced, the total heat release (THR) decreased by 31.3%, the residue mass increased by 51.4%, the time to ignition (TTI) delay rate reached 77.8%, the mass loss rate (MLR) decreased, and the carbon formation improved. Additionally, as compared to the non-flame-retardant bamboo, the total smoke release (TSR) of the CaAl-SiO3-LDHs flame-retardant bamboo decreased by 38.9%, and the carbon monoxide yield (YCO) approached zero. Thus, the CaAl-SiO3-LDHs flame-retardant bamboo has excellent flame-retardancy and smoke suppression characteristics.


2012 ◽  
Vol 627 ◽  
pp. 892-895 ◽  
Author(s):  
Li Hua Lv ◽  
Min Zuo ◽  
Chun Yan Wei ◽  
Xiao Wang ◽  
Ke Wang

In this paper, abandoned flax fibers were adopted as reinforcing materials, polyurethane particles were adopted as matrix materials. Through blend mastication and hot-pressing methods to exploit flame-retardant fiberboards, which were made of abandoned flax fibers and polyurethanes. This paper explored the mechanical properties and flame-retardant property.Tensile strength, bending strength and impact strength were selected as mechanical properties' test index, limiting oxygen index was selected as flame-retardant property's test index. Abandoned flax fibers mass fraction, hot-pressing temperature, hot-pressing time and flame-retardant mass fraction acted as level of factor. The optimized processing conditions were concluded through orthogonal experiment and the range analysis: abandoned flax fibers mass fraction 45%, hot-pressing temperature 170°C, hot-pressing time 6 min, flame-retardant mass fraction 10%. This paper studied the solution of the abandoned fibers’ reuse. At the same time, it provided theoretical guidance for the further development of flame- retardant polyurethane fiberboard.


2020 ◽  
Vol 32 (8) ◽  
pp. 871-882 ◽  
Author(s):  
Yun Peng ◽  
Mei Niu ◽  
Ruihong Qin ◽  
Baoxia Xue ◽  
Mingqiang Shao

To reduce the environmental hazard from the flame retardant, a halogen-free phosphorus-containing silicone flame-retardant poly N, N dimethylene phosphate aminopropyl siloxane (PDPSI) was prepared following the Mannich reaction. Then, PDPSI and ferric oxide (Fe2O3) were used for the preparation of synergistic flame-retardant polyethylene terephthalate (PET). The flame-retardant test results revealed that at 2% PDPSI/Fe2O3 content and 1:2 mass ratio of PDPSI to Fe2O3, the limit oxygen index value of the PDPSI/Fe2O3/PET composite material was 27.9%, reaching the flame-retardant level and passing the V-0 rating in the UL-94 test. In addition, the PDPSI/Fe2O3/PET composites had a char residue content of 17.5% at 700°C, an increase of 30.6% compared to that of the pristine PET. In the cone calorimeter test, the addition of PDPSI/Fe2O3 significantly reduced the peak heat release rate (PHRR), total heat release (THR) rate, and total smoke production (TSP) value of the resulting PET composites. PHRR and THR decreased by 66.05% and 14.3%, respectively. The TSP value decreased from 14.4 m2 to 8.1 m2, a decrease of 43.8%. The scanning electron microscopy images and Fourier-transform infrared spectra of the char residue showed a significant synergy between Fe2O3 and PDPSI, changing the structure of the carbon layer in continuous and dense form, thus the flame retardancy and smoke suppression of the PET composites improved. In addition, the tensile strength of the PET composite was 42.11 MPa, which was only 1.84% less than that of the pristine PET.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3161 ◽  
Author(s):  
Nihua Zheng ◽  
Danni Wu ◽  
Ping Sun ◽  
Hongguang Liu ◽  
Bin Luo ◽  
...  

Magnesium-cemented poplar particleboard (MCPB) is a new environmental inorganic magnesium cementitious composite without formaldehyde release. In this study, soybean flour (SM), silane coupling agent (KH560), soybean protein isolate (SPI), polyethylene glycol (PEG-400), maleic anhydride (MAH), and polyacrylic acid (PAA) were added to MCPB to improve the mechanical properties, waterproofing properties, and flame retardancy. The results show that the SPI group had the best mechanical performance; the modulus of elasticity (MOE) was up to 5192 MPa and exceeded the Chinese national standard GBT 4897-2015 (GBT) by 67.4%, the modulus of rupture (MOR) reached 17.72 MPa and exceeded GBT by 18%. Thickness swelling (TS) after 24-hour immersion was 0.29% and reached the standard of GBT (≤16%). The fire resistance test of MCPB indicated that the KH560 group improved the flame retardancy, the heat release rate (HRR) was 18kW/m2, the total smoke produced (TSP) was 0.192 m2, the total heat release (THR) was 29.71 MJ/kg, which reached the Chinese national standard GBT 8624-2012.


2021 ◽  
Vol 7 (3) ◽  
pp. 105-109
Author(s):  
Sheikh Sha Alam

A novel flame retardant especially Pekoflam HFC was synthesized to improve the flame retardancy of fabric. Pekoflam HFC is especially suitable for flame retardant back coatings of synthetic fibre based home textiles and high-performance technical textiles. The flame retardancy of the samples was characterized by the spray method and the vertical burning test. The results indicated that the flame retardant had excellent flame retardancy and durability for cellulosic fabrics. The cotton knit fabric treated with Pekoflam HFC obtained the optimum flame retardancy with the decreased char length. Combustion behaviors of treated cotton fabric were tested by manual observation. After treatment, it found that the ignition time increased, and the values of total heat release, heat release rate and mass loss decreased. The strength and durability of treated fabric were studied by tear force test and washing durability test, respectively.


2021 ◽  
pp. 096739112110245
Author(s):  
Jiangbo Wang

A novel phosphorus-silicon containing flame-retardant DOPO-V-PA was used to wrap carbon nanotubes (CNTs). The results of FTIR, XPS, TEM and TGA measurements exhibited that DOPO-V-PA has been successfully grafted onto the surfaces of CNTs, and the CNTs-DOPO-V-PA was obtained. The CNTs-DOPO-V-PA was subsequently incorporated into epoxy resin (EP) for improving the flame retardancy and dispersion. Compared with pure EP, the addition of 2 wt% CNTs-DOPO-V-PA into the EP matrix could achieve better flame retardancy of EP nanocomposites, such as a 30.5% reduction in peak heat release rate (PHRR) and 8.1% reduction in total heat release (THR). Furthermore, DMTA results clearly indicated that the dispersion for CNTs-DOPO-V-PA in EP matrix was better than pristine CNTs.


Sign in / Sign up

Export Citation Format

Share Document