Synthesis and Characterization of Ag-Decorated TiO2 Nanoparticles for Photocatalytic Application

2021 ◽  
Vol 10 (4) ◽  
pp. 13-18
Author(s):  
K. Balachandran ◽  
G. Vijayakumar ◽  
S. Mageswari ◽  
A. Preethi ◽  
M.S. Viswak Senan

TiO2 nanoparticles (TiO2) and Ag-doped TiO2 nanocomposites (Ag-TiO2) were synthesized by the Sol-Gel process using titanium tetra isopropoxide as TiO2 and AgNO3 as Ag precursors, respectively. The synthesized nanocomposites were characterized by XRD, SEM, TEM, FT-IR, and UV­-Visible analysis. The XRD results show that Ag doping increases the grain size from 22 nm to 36 nm. From the UV-Visible spectra, the redshift in absorbance was observed, which indicates the increase in grain size and it reduces the bandgap. The TEM analysis shows that all the particles are exhibited in the nanometer range. The synthesized nanoparticles show good photocatalytic activity, and they decompose the methyl orange dye within 5 hours.

2016 ◽  
Vol 857 ◽  
pp. 480-484
Author(s):  
Nur Izzati Mohd Anuar ◽  
Jeyashelly Andas

Silica extracted from rice husk was used as a support to synthesize the monometallic Ag, Co and bimetallic Ag-Co nanoparticles. The nanoparticles were prepared via a sol-gel method by adding glucose as the reducing agent. The prepared nanoparticles were designated as Ag-NP, Co-NP and AgCo-NP. The successful incorporation of Ag/Co onto the silica surface were evidenced by TEM, FT-IR and DR/UV-Vis analysis. The TEM analysis showed the presence of small spherical shape nanoparticles with an average mean size of 3.18-3.57 nm. Through DR/UV-Vis analysis, the presence of Ag+ and cobalt in the oxidation state of +2 and +3 were confirmed, while FT-IR verified the presence of M-O and Si-O-M+ bond.


2008 ◽  
Vol 396-398 ◽  
pp. 481-484
Author(s):  
Rodrigo Jiménez-Gallegos ◽  
L. Téllez-Jurado ◽  
Luis M. Rodríguez-Lorenzo ◽  
Julio San Román

This paper focuses on the preparation of siloxane-polyurethane hybrid materials using a sol-gel method. The global aim of the project is to tailor mechanical properties, degradability rate, bioactivity and biocompatibility to design scaffolds for musculoskeletal applications. A series of seven hybrid materials were synthesized with varying the proportion of polydimethylsiloxane (PDMS), and Polyurethane (PU). The organic part ratios (by weight) employed were (% PDMS:% PU) 30:0, 35:5, 20:10, 15:15, 10:20, 5:25, and 0:30. The organic part was reacted with constant 70 % TEOS to obtain the hybrid materials. A sol-gel process was selected for the synthesis of the hybrids. The characterization of materials was carried out by the fourier-infrared spectroscopy (FT-IR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electronic microscopy (SEM) and proton nuclear magnetic resonance (1H-NMR) techniques in order to analyze the structure, microstructure and chemical composition of the hybrid materials. Gelification time depends on the proportion of PU used. When no PU is employed, the gel time is 8 hours but it rises up to 18 days for 30 % of polyurethane. Materials range from opaque to translucent but with a greater fragility for greater amounts of polyurethane. No differences in the bonding of materials could be appreciated.


2017 ◽  
Vol 748 ◽  
pp. 413-417
Author(s):  
Chun Yu Long ◽  
Fang Fang Peng ◽  
Min Min Jin ◽  
Pei Song Tang ◽  
Hai Feng Chen

Using Pr (NO3)3, butyl titanate, ethylene glycol and citric acid as main raw materials, praseodymium titanate (Pr2Ti2O7) was prepared by the sol-gel process. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), thermal gravity-differential thermal analysis (TG-DTA), diffuse-reflection spectra (DRS) and Fourier transform infrared (FT-IR). The effect of different calcination temperature and illumination time on the photocatalytic properties of Pr2Ti2O7 was investigated. It was found that the single phase Pr2Ti2O7 could be obtained through sol-gel process and calcination at 1000 °C. The Pr2Ti2O7 samples calcination at 1000 °C were uniform , and the resulting product had a particle size of 200 nm and an optical band gap of 3.26 eV. Under ultraviolet light, the degradation of methyl orange arrived to 80.11% after 180 min of photocatalytic reaction. The Pr2Ti2O7 samples showed good photocatalytic activity for decomposition of methyl orange.


2012 ◽  
Vol 624 ◽  
pp. 34-37
Author(s):  
Xiao Yan Zhang ◽  
Wen Shu Hu ◽  
Xi Wei Qi ◽  
Gui Fang Sun ◽  
Jian Quan Qi ◽  
...  

Bi2Al4O9 powders were prepared by sol-gel process. The precursors were heated at 500-800°C for 2h to obtain Bi2Al4O9 powder and X-ray diffraction (XRD), Differential thermal analysis (DTA), thermogravimetric analysis (TG), field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) techniques were used to characterize precursor and derived oxide powders. XRD analysis show that the powder is still amorphous after calcined at 500°C. The peaks of Bi2Al4O9 become sharp after calcined at 575°C though still existing some amorphous phase. After calcining at 675-800°C, the powder has fully turned into pure Bi2Al4O9 phase. The crystallization process can also be confirmed by DTA-TG and IR. Calcining the precursor at 575°C, the absorption bands at 527 cm-1, 738 cm-1, 777 cm-1, and 919 cm-1are observed, which are assigned to Bi2Al4O9 and becoming stronger and sharper with the increase of temperature.


2012 ◽  
Vol 482-484 ◽  
pp. 962-965
Author(s):  
Zhen Lin Jiang ◽  
Chao Sheng Wang ◽  
Jia Lin Liu ◽  
Qiong Wang ◽  
Li Feng Li ◽  
...  

The polyorganosiloxane superhydrophobic film was fabricated via a sol-gel process followed by nano-silica(SiO2) sol and new organo-siloxane reagent 1,1,1,3,5,5,5-heptamethyl-3-[2-(trimethoxysilyl)-ethyl]-tri-siloxane(in brief as HPTETOs), the chemical structure of the polyorganosiloxane superhydrophobic were described by Fourier transform infrared spectroscopy (FT-IR), the superhydrophobic property of the treated sample was measured by contact angle (CA) measurements. It revealed that nano-silica and polyorganosiloxane formed 3D hydrophobic groups on the film; the film has turned its wetting property from hydrophilic to superhydrophobic with water contact angle of 143.7°.


2007 ◽  
Vol 350 ◽  
pp. 43-46 ◽  
Author(s):  
Kiyotaka Tanaka ◽  
Kenichi Kakimoto ◽  
Hitoshi Ohsato

Various KNbO3 powders have been derived from sol-gel process by using different preparation and heating conditions. KNbO3 powder derived from ethanol solution and fabricated at 800oC was most suitable as the raw material of KNbO3 bulk ceramics, because of the small grain size of about 250 nm and its homogeneous size distribution.


Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


Sign in / Sign up

Export Citation Format

Share Document